Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764462

RESUMO

The enthalpies of formation in the gaseous phase of methyl 3-methylanthranilate and methyl 5-methylanthranilate were determined from experimental measurements of the corresponding standard energies of combustion, obtained from combustion calorimetry, and the standard enthalpies of vaporization and sublimation, obtained from Calvet microcalorimetry and Knudsen mass-loss effusion. A computational study, using the G3(MP2)//B3LYP composite method, has also been performed for the calculation of the gas-phase standard enthalpies of formation of those two molecules at T = 298.15 K, as well as for the remaining isomers, methyl 4-methylanthranilate and methyl 6-methylanthranilate. The results have been used to evaluate and analyze the energetic effect of the methyl substituent in different positions of the ring.

2.
Molecules ; 27(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056694

RESUMO

The thermochemical study of the 1,3-bis(N-carbazolyl)benzene (NCB) and 1,4-bis(diphenylamino)benzene (DAB) involved the combination of combustion calorimetric (CC) and thermogravimetric techniques. The molar heat capacities over the temperature range of (274.15 to 332.15) K, as well as the melting temperatures and enthalpies of fusion were measured for both compounds by differential scanning calorimetry (DSC). The standard molar enthalpies of formation in the crystalline phase were calculated from the values of combustion energy, which in turn were measured using a semi-micro combustion calorimeter. From the thermogravimetric analysis (TGA), the rate of mass loss as a function of the temperature was measured, which was then correlated with Langmuir's equation to derive the vaporization enthalpies for both compounds. From the combination of experimental thermodynamic parameters, it was possible to derive the enthalpy of formation in the gaseous state of each of the title compounds. This parameter was also estimated from computational studies using the G3MP2B3 composite method. To prove the identity of the compounds, the 1H and 13C spectra were determined by nuclear magnetic resonance (NMR), and the Raman spectra of the study compounds of this work were obtained.

3.
Angew Chem Int Ed Engl ; 60(3): 1546-1549, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32970365

RESUMO

Recent density-functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high-accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE-25X-XDM//B86bPBE-XDM and PBE0-XDM//PBE-XDM results overlap with the experimental -TΔS results and bracket the experimental values of ΔH and ΔG, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are Δf Ho =-2150±150 J mol-1 , Δf So =3.44±0.03 J K-1 mol-1 and Δf Go =-3170±150 J mol-1 .

4.
Molecules ; 25(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842699

RESUMO

The energy involved in the structural switching of acyl and hydroxyl substituents in the title compounds was evaluated combining experimental and computational studies. Combustion calorimetry and Knudsen effusion techniques were used to determine the enthalpies of formation, in the crystalline state, and of sublimation, respectively. The gas-phase enthalpy of formation of both isomers was derived combining these two experimental data. Concerning the computational study, the G3(MP2)//B3LYP composite method was used to optimize and determine the energy of the isomers in the gaseous state. From a set of hypothetical reactions it has been possible to estimate the gas-phase enthalpy of formation of the title compounds. The good agreement between the experimental and computational gas-phase enthalpies of formation of the 1-acetyl-2-naphthol and 2-acetyl-1-naphthol isomers, provided the confidence for extending the computational study to the 2-acetyl-3-naphthol isomer. The structural rearrangement of the substituents in position 1 and 2 in the naphthalene ring and the energy of the intramolecular hydrogen bond are the factors responsible for the energetic differences exhibited by the isomers. The gas phase tautomeric keto ↔ enol equilibria of the o-acetylnaphthol isomers were analyzed using the Boltzmann's distribution.


Assuntos
Corantes/química , Naftóis/química , Isomerismo , Estrutura Molecular , Termodinâmica
5.
J Phys Chem A ; 122(16): 4130-4137, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29616550

RESUMO

Theoretical and experimental studies on the energetic, structural and some other relevant physicochemical properties of the antioxidant tyrosol (1), hydroxytyrosol (1OH) molecules and the corresponding radicals 1rad• and 1Orad• are reported in this work. The experimental values of the gas-phase enthalpy of formation, Δf Hm0(g), in kJ·mol-1, of 1 (-302.4 ± 3.4) and 1OH (-486.3 ± 4.1) have been determined. Quantum chemical calculations, at DFT (M05-2X) and composite ab initio G3 and G4 levels of theory, provided results that served to (i) confirm the excellent consistency of the experimental measurements performed, (ii) establish that the stabilizing effect of H-bond of hydroxyethyl chain and aromatic ring (OH···π interaction) is smaller in radicals than in parent molecules, (iii) deduce-combining experimental data in isodesmic reactions-Δf Hm0(g) of radicals 1rad• (-152.3 ± 4.4 kJ·mol-1) and 1Orad• (-370.6 ± 3.8 kJ·mol-1), (iv) estimate a reliable O-H bond dissociation enthalpy, BDE of 1 (368.1 ± 5.6 kJ·mol-1) and of 1OH (333.7 ± 5.6 kJ·mol-1), and (v) corroborate-using "BDE criteria"-than 1OH is a more effective antioxidant than 1.


Assuntos
Antioxidantes/química , Álcool Feniletílico/análogos & derivados , Teoria Quântica , Calorimetria , Modelos Moleculares , Fenóis/química , Álcool Feniletílico/química , Termodinâmica
6.
Molecules ; 23(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428603

RESUMO

The present work addresses computational research focused on the energetic and structural properties of four isomers monohydroxyxanthone, using the G3(MP2)//B3LYP method, in order to evaluate the influence of the hydroxyl (-OH moiety) functional group on the xanthone molecule. The combination of these computational results with previous experimental data of these compounds enabled the determination of their enthalpies, entropies and Gibbs energies of formation, in the gaseous phase, and consequently to infer about the relative thermodynamic stability of the four isomers. Other issues were also addressed for the hydroxyxanthone isomers, namely the conformational and the tautomeric equilibrium analysis of the optimized molecular structures, the frontier orbitals, and the electrostatic potential energy maps. Complementarily, an energetic study of the intramolecular O - H ⋯ O hydrogen bond for 1-hydroxanthone was also performed.


Assuntos
Radical Hidroxila/química , Modelos Moleculares , Estrutura Molecular , Xantonas/química , Algoritmos , Ligação de Hidrogênio , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
7.
J Org Chem ; 79(23): 11583-91, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25369538

RESUMO

This paper is concerned with computational and experimental thermochemical studies of azepan and azepan-1-ylacetonitrile, molecules whose flexible ring structure provides several conformational forms with low energy barriers among them. The computational study describes the energetic analysis of the six most stable conformers on the potential energy surfaces and the determination of their gas-phase standard enthalpy of formation at the reference temperature of 298.15 K. The same gas-phase enthalpic parameters are also derived from the enthalpies of formation in the liquid phase and the enthalpies of vaporization, at T = 298.15 K, determined experimentally using the combustion calorimetry and the Calvet microcalorimetry techniques, respectively. The experimental data reported in this work for the two titled compounds together with other available in the literature for related molecules enabled the establishment of an increments scheme, providing a reliable approach on the prevision of gas-phase enthalpy of formation of cyclic/acyclic hydrocarbons and amines. Complementary, natural bond orbital (NBO) calculations were also performed, allowing an advance on the analysis of the structural and reactivity behavior of these type of compounds.

8.
J Phys Chem A ; 114(34): 9237-45, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20681553

RESUMO

A computational study of the structural and thermochemical properties of N-phenyl (open) and N-alkyl (cyclic) ureas, through the use of M05-2X and B3LYP density functional theory calculations has been carried out. The consistency of the literature experimental results has been confirmed, and using mainly isodesmic reactions, the unknown Delta(f)H(0)(g) of the other urea derivatives were estimated. The experimental results together with the theoretical information have permitted the study of the effect of phenyl, p- and m-chlorophenyl, alkyl, and carbonyl substitutions on the thermodynamical stability of urea and its cyclic derivatives. The peculiar behavior of the N-tert-butyl substituent in cyclic ureas has been related to geometric deformations.


Assuntos
Barbital/química , Carbanilidas/química , Hidantoínas/química , Imidazolidinas/química , Compostos de Metilureia/química , Teoria Quântica , Temperatura , Ureia/química , Modelos Moleculares , Conformação Molecular , Compostos de Fenilureia/química , Termodinâmica
9.
J Phys Chem A ; 113(46): 12988-94, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19821598

RESUMO

The molecular stability of thioxanthene, a key species from which very important compounds with industrial relevance are derived, has been studied by a combination of several experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpy of formation of crystalline thioxanthene (117.4 +/- 4.1 kJ x mol(-1)) was determined from the experimental standard molar energy of combustion, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The enthalpy of sublimation was determined by a direct method, using the vacuum drop microcalorimetric technique, and also by an indirect method, using a static apparatus, where the vapor pressures at different temperatures were measured. The latter technique was used for both crystalline and undercooled liquid samples, and the phase diagram of thioxanthene near the triple point was obtained (triple point coordinates T = 402.71 K and p = 144.7 Pa). From the two methods, a mean value for the standard (p degrees = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K (101.3 +/- 0.8 kJ x mol(-1)), was derived. From the latter value and from the enthalpy of formation of the solid, the standard (p degrees = 0.1 MPa) enthalpy of formation of gaseous thioxanthene was calculated as 218.7 +/- 4.2 kJ x mol(-1). Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several homodesmotic reactions in order to derive the standard molar enthalpy of formation of thioxanthene. The ab initio results are in excellent agreement with the experimental data.


Assuntos
Termodinâmica , Tioxantenos/química , Simulação por Computador , Gases/química , Modelos Químicos , Teoria Quântica , Temperatura
10.
Chemosphere ; 107: 203-210, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24444416

RESUMO

A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds.


Assuntos
Calorimetria , Modelos Moleculares , Naftalenos/química , Gases/química , Conformação Molecular , Termodinâmica , Volatilização
11.
J Phys Chem A ; 111(30): 7237-42, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17616179

RESUMO

A static bomb calorimeter has been used to measure the standard molar energy of combustion, in oxygen, at T = 298.15 K, of a commercial sample of cytosine. From this energy, the standard (p degrees = 0.1 MPa) molar enthalpy of formation in the crystalline state was derived as -(221.9 +/- 1.7) kJ.mol(-1). This value confirms one experimental value already published in the literature but differs from another literature value by 13.5 kJ.mol(-1). Using the present standard molar enthalpy of formation in the condensed phase and the enthalpy of sublimation due to Burkinshaw and Mortimer [J. Chem. Soc., Dalton Trans. 1984, 75], (155.0 +/- 3.0) kJ.mol(-1), results in a value for the gas-phase standard molar enthalpy of formation for cytosine of -66.9 kJ.mol(-1). A similar value, -65.1 kJ.mol(-1), has been estimated after G3MP2B3 calculations combined with the reaction of atomization on three different tautomers of cytosine. In agreement with experimental evidence, the hydroxy-amino tautomer is the most stable form of cytosine in the gas phase. The enthalpies of formation of the other two tautomers were also estimated as -60.7 kJ.mol(-1) and -57.2 kJ.mol(-1) for the oxo-amino and oxo-imino tautomers, respectively. The same composite approach was also used to compute other thermochemical data, which is difficult to be measured experimentally, such as C-H, N-H, and O-H bond dissociation enthalpies, gas-phase acidities, and ionization enthalpies.


Assuntos
Algoritmos , Citosina/química , Aminas/química , Calorimetria , Gases , Concentração de Íons de Hidrogênio , Iminas/química , Marcação por Isótopo , Oxigênio/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA