Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 195: 106856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153576

RESUMO

Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.

2.
Crit Rev Microbiol ; 49(1): 101-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35176944

RESUMO

Microbial surfactants are particularly useful in bioremediation and heavy metal removal from soil and aquatic environments, amongst other highly valued uses in different economic and biomedical sectors. Marine sponge-associated bacteria are well-known producers of bioactive compounds with a wide array of potential applications. However, little progress has been made on investigating biosurfactants produced by these bacteria, especially when compared with other groups of biologically active molecules harnessed from the sponge microbiome. Using a thorough literature search in eight databases, the purpose of the review was to compile the current knowledge on biosurfactants from sponge-associated bacteria, with a focus on their relevant biotechnological applications. From the publications between the years 1995 and 2021, lipopeptides and glycolipids were the most identified chemical classes of biosurfactants. Firmicutes was the dominant phylum of biosurfactant-producing strains, followed by Actinobacteria and Proteobacteria. Bioremediation led as the most promising application field for the studied surface-active molecules in sponge-derived bacteria, despite the reports endorsed their use as antimicrobial and antibiofilm agents. Finally, we appoint some key strategies to instigate the research appetite on the isolation and characterization of novel biosurfactants from the poriferan microbiome.


Assuntos
Poríferos , Animais , Tensoativos/química , Bactérias/genética , Biotecnologia
3.
Curr Microbiol ; 77(5): 807-815, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925513

RESUMO

The search for new, powerful antimicrobials is essential to respond to the current worldwide spread of antibiotic-resistant pathogens. Sponge-associated bacteria have great potential for production of antimicrobials against resistant and multidrug resistant (MDR) pathogenic bacteria, but only few species of the Class Homoscleromorpha have been screened for these activities so far. The aim of this study was to isolate and identify sponge-associated bacteria active against antibiotic-resistant pathogens from sponges of classes Homoscleromorpha and Demospongiae. By employing five different growth conditions, a total of 239 colony-forming units were isolated and remained viable. Among these, 17 (7.1%) isolates presented antimicrobial activity against pathogenic and (multi)drug resistant bacteria including vancomycin-resistant Enterococcus faecalis, Escherichia coli, Citrobacter freundii, Klebsiella penumoniae, Staphylococcus spp. and Streptococcus spp. Bioactive bacteria belonging to genera Bacillus and Vibrio were identified at species level and the DNA fingerprint patterns showed that strains of the same genus were not clonally related. The most active strains belong to genus Bacillus and were isolated from Oscarella sp., Plakina cyanorosea and Chondrilla caribensis. Our results show for the first time that sponge-associated strains of Bacillus pumilus and Bacillus muralis have high anti-MDR activity, and that the Homoscleromorpha may be a better source of such anti-MDR active bacteria than the Demospongiae. These results suggest that marine bacteria associated to homoscleromorph sponges may be an interesting source of new antimicrobial substances with biotechnological potential to treat infections caused by antibiotic-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Antibiose , Bacillus/fisiologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Poríferos/microbiologia , Animais , Bacillus/classificação , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética
4.
Curr Pharm Biotechnol ; 24(4): 471-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35578838

RESUMO

The sponge-microorganism partnership is one of the most successful symbiotic associations exploited from a biotechnological perspective. During the last thirty years, sponge-associated bacteria have been increasingly harnessed for bioactive molecules, notably antimicrobials and cytotoxic compounds. Unfortunately, there are gaps in sponge microbial biotechnology, with a multitude of applications being understudied or ignored. In this context, the current perspective aims to shed light on these underrated facets of sponge microbial biotechnology with a balance of existent reports and proposals for further research in the field. Our overview has showcased that the members of the sponge microbiome produce biomolecules whose usage can be valuable for several economically- relevant and demanding sectors. Outside the exhaustive search for antimicrobial secondary metabolites, sponge-associated microorganisms are gifted producers of antibiofilm, antivirulence and chronic diseases-attenuating substances highly envisaged by the pharmaceutical industry. Despite still at an infant stage of research, anti-ageing enzymes and pigments of special interest for the cosmetic and cosmeceutical sectors have also been reported from the sponge microbial symbionts. In a world urging for sustainability, sponge-associated microorganisms have been proven as fruitful resources for bioremediation, including recovery of heavy-metal contaminated areas, bioleaching processes, and as bioindicators of environmental pollution. In conclusion, we propose alternatives to better assess these neglected biotechnological applications of the sponge microbiome in the hope of sparking the interest of the scientific community toward their deserved exploitation.


Assuntos
Anti-Infecciosos , Microbiota , Poríferos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biotecnologia
5.
Environ Microbiol Rep ; 12(6): 619-638, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048474

RESUMO

Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Modelos Biológicos , Filogenia , Poríferos/crescimento & desenvolvimento , Poríferos/fisiologia , Simbiose
6.
Front Microbiol ; 11: 592735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488540

RESUMO

Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA