RESUMO
BACKGROUND: Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS: We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS: Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.
Assuntos
Acidente Nuclear de Chernobyl , Animais , Humanos , Densidade Demográfica , Animais Selvagens , Radiação Ionizante , Anuros/genéticaRESUMO
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Assuntos
Caenorhabditis elegans/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , Reprodução/efeitos da radiação , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Feminino , Raios gama/efeitos adversos , Masculino , Modelos Biológicos , Estresse Oxidativo/efeitos da radiação , Tolerância a Radiação , Reprodução/fisiologiaRESUMO
Due to a lack of information on the assessment of uranium's (U) toxicity, our work aimed to compare the effects of U on the crayfish Procambarus clarkii with those of the well documented metal: cadmium (Cd). Accumulation and impacts at different levels of biological organization were assessed after acute (40 µM Cd or U; 4-10 days) and chronic (0.1 µM Cd or U; 30-60 days) exposures. The survival rates demonstrated the high tolerance of this species toward both metals and showed that Cd had a greater effect on the sustainability of crayfish. The concentration levels of Cd and U accumulated in gills and hepatopancreas were compared between both conditions. Distinctions in the adsorption capacities and the mobility of the contaminants were suspected. Differences in the detoxification mechanisms of both metals using transmission electron microscopy equiped with an energy dispersive X-ray were also pointed out. In contrast, comparison between the histological structures of contaminated hepatopancreas showed similar symptoms. Principal component analyses revealed different impacts of each metal on the oxidative balance and mitochondria using enzymatic activities and gene expression levels as endpoints. The observation that U seemed to generate more oxidative stress than Cd in our conditions of exposure is discussed.
Assuntos
Astacoidea , Cádmio/toxicidade , Urânio/toxicidade , Animais , Cádmio/metabolismo , Expressão Gênica/efeitos dos fármacos , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Resíduos Industriais , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Sobrevida , Urânio/metabolismoRESUMO
The interactions between uranium and two functional proteins (AChE and Vtg) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 1 to 3235) at physiologically relevant conditions of pH. Results showed that fluorescence from the two functional proteins was quenched by UO2 (2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of proteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the protein complexation by uranium could be simulated by two specific sites (L1 and L2). The obtained complexation constant values are log K1 = 5.7 (±1.0), log K2 = 4.9 (±1.1); L1 = 83 (±2), L2 = 2220 (±150) for U(VI) - Vtg and log K1 = 8.1 (±0.9), log K2 = 6.6 (±0.5), L1 = 115 (±16), L2 = 530 (±23) for U(VI)-AChE (Li is expressed in mol/mol of protein).
Assuntos
Acetilcolinesterase/química , Software , Espectrometria de Fluorescência/métodos , Compostos de Urânio/química , Vitelogeninas/química , Acetilcolinesterase/metabolismo , Sítios de Ligação , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Processamento de Sinais Assistido por Computador , Compostos de Urânio/metabolismo , Vitelogeninas/metabolismoRESUMO
Uranium is a natural, ubiquitous radioactive element for which elevated concentrations can be found in the vicinity of some nuclear fuel cycle facilities or intensive farming areas, and most often in mixtures with other contaminants such as cadmium, due to co-occurrence in geological ores (e.g. U- or P-ore). The study of their combined effects on ecosystems is of interest to better characterize such multi-metallic polluted sites. In the present study, the toxicity of binary mixture of U and Cd on physiological parameters of the soil nematode Caenorhabditis elegans was assessed over time. Descriptive modeling using concentration and response addition reference models was applied to compare observed and expected combined effects and identify possible synergistic or antagonistic interactions. A strong antagonism between U and Cd was identified for length increase and brood size endpoints. The study revealed that the combined effects might be explained by two nested antagonistic interactions. We demonstrate that the first interaction occurred in the exposure medium. We also identified a significant second antagonistic interaction which occurred either during the toxicokinetic or toxicodynamic steps. These findings underline the complexity of interactions that may take place between chemicals and thus, highlight the importance of studying mixtures at various levels to fully understand underlying mechanisms.
Assuntos
Cádmio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Poluentes do Solo/toxicidade , Urânio/toxicidade , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Reprodução/efeitos dos fármacosRESUMO
A non-denaturating isoelectric focusing (ND-IEF) gel electrophoresis protocol has been developed to study and identify uranium (U)-protein complexes with laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS) and electrospray ionization mass spectrometry (ESI-MS). The ND-IEF-LA-ICP MS methodology set-up was initiated using in vitro U-protein complex standards (i.e., U-bovine serum albumin and U-transferrin) allowing the assessment of U recovery to 64.4 ± 0.4 %. This methodology enabled the quantification of U-protein complexes at 9.03 ± 0.23, 15.27 ± 0.36, and 177.31 ± 25.51 nmol U L(-1) in digestive gland cytosols of the crayfish, Procambarus clarkii, exposed respectively to 0, 0.12, and 2.5 µmol of waterborne depleted U L(-1) during 10 days. ND-IEF-LA-ICP MS limit of detection was 19.3 pmol U L(-1). Elemental ICP MS signals obtained both in ND-IEF electropherograms and in size exclusion chromatograms of in vivo U-protein complexes revealed interactions between U- and Fe- and Cu-proteins. Moreover, three proteins (hemocyanin, pseudohemocyanin-2, and arginine kinase) out of 42 were identified as potential uranium targets in waterborne-exposed crayfish cytosols by microbore reversed phase chromatography coupled to molecular mass spectrometry (µRPC-ESI-MS/MS) after ND-IEF separation.
Assuntos
Focalização Isoelétrica/métodos , Proteínas/química , Espectrometria de Massas em Tandem/métodos , Urânio/química , Animais , Astacoidea , Bovinos , Humanos , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
An off-gel non-denaturing isoelectric focusing (IEF) method was developed to separate uranium-biomolecule complexes from biological samples as a first step in a multidimensional metalloproteomic approach. Analysis of a synthetic uranium-bovine serum albumin complex demonstrated the focusing ability of the liquid-phase IEF method and the preservation of most of the uranium-protein interactions. The developed method was applied to gill cytosol prepared from zebrafish (Danio rerio) exposed to depleted uranium. The results were compared in terms of resolution, recovery, and protein identities with those obtained by in-gel IEF using an immobilized pH gradient gel strip.
Assuntos
Focalização Isoelétrica , Proteínas/química , Urânio/química , Animais , Bovinos , Técnicas de Química Analítica , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Lasers , Metais/química , Proteômica , Força Próton-Motriz , Soroalbumina Bovina/química , Temperatura , Peixe-ZebraRESUMO
The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;43:2071-2079. © 2024 SETAC.
Assuntos
Raios gama , Reprodução , Animais , Masculino , Feminino , Reprodução/efeitos dos fármacos , Anfípodes/efeitos dos fármacos , Espécies Sentinelas , Muda/efeitos dos fármacosRESUMO
The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.
Assuntos
Rotas de Resultados Adversos , Ecotoxicologia , Ecotoxicologia/métodos , Inteligência Artificial , Medição de Risco/métodosRESUMO
PURPOSE: Task Group 121 - Effects of ionizing radiation exposure in offspring and next generations - is a task group under the Committee 1 of the International Commission on Radiological Protection (ICRP), approved by the Main Commission on 18th November 2021. The main goals of Task Group 121 are to (1) review and update the scientific literature of relevance to radiation-related effects in the offspring of parent(s) exposed to ionizing radiation in both human and non-human biota; (2) to assess preconceptional and intrauterine effects of radiation exposure and related morbidity and mortality; and, (3) to provide advice about the level of evidence and how to consider these preconceptional and postconceptional effects in the system of radiological protection for humans and non-human biota. METHODS: The Task Group is reviewing relevant literature since Publication 90 'Biological effects after prenatal irradiation (embryo and fetus)' (2003) and will include radiation-related effects on future generations in humans, animals, and plants. This review will be conducted to account for the health effects on offspring and subsequent generations in the current system of radiological protection. Radiation detriment calculation will also be reviewed. Finally, preliminary recommendations will be made to update the integration of health effects in offspring and next generations in the system of radiological protection. RESULTS: A Workshop, jointly organized by ICRP Task Group 121 and European Radiation Protection Research Platforms MELODI and ALLIANCE was held in Budapest, Hungary, from 31st May to 2nd June 2022. Participants discussed four important topics: (1) hereditary and epigenetic effects due to exposure of the germ cell line (preconceptional exposure), (2) effects arising from exposure of the embryo and fetus (intrauterine exposure), (3) transgenerational effects on biota, and (4) its potential impact on the system of radiological protection. CONCLUSIONS: Based on the discussions and presentations during the breakout sessions, newer publications, and gaps on the current scientific literature were identified. For instance, there are some ongoing systematic reviews and radiation epidemiology reviews of intrauterine effects. There are newer methods of Monte Carlo simulation for fetal dosimetry, and advances in radiation genetics, epigenetics, and radiobiology studies. While the current impact of hereditary effects on the global detriment was reported as small, the questions surrounding the effects of radiation exposure on offspring and the next generation are crucial, recurring, and with a major focus on exposed populations. This article summarizes the workshop discussions, presentations, and conclusions of each topic and introduces the special issue of the International Journal of Radiation Biology resulting from the discussions of the meeting.
Assuntos
Proteção Radiológica , Radiação Ionizante , Humanos , Animais , Feminino , Exposição à Radiação/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia , Gravidez , Agências InternacionaisRESUMO
The rehabilitation of French former uranium mining sites has not prevented the contamination of the surrounding aquatic ecosystems with metal elements. This study assesses the impact of the discharge of treated uranium mining effluents on periphytic diatom communities to evaluate their potential of bioindication. A 7-month survey was conducted on the Ritord watercourse to measure the environmental conditions of microalgae, the non-taxonomic attributes of periphyton (photosynthesis and biomass) and to determine the specific composition of diatom assemblages grown on artificial substrates. The environmental conditions were altered by the mine waters, that contaminate the watercourse with uranium and with chemicals used in the pit-water treatment plants (BaCl2 and Al2(SO4)3). The biomass and photosynthetic activity of periphyton seemed not to respond to the stress induced by the treated mining effluents whereas the altered environmental conditions clearly impacted the composition of diatom communities. Downstream the discharges, the communities tended to be characterized by indicator species belonging to the genera Fragilaria, Eunotia and Brachysira and were highly similar to assemblages at acid mine drainage sites. The species Eunotia pectinalis var. undulata, Psammothidium rechtensis, Gomphonema lagenula and Pinnularia major were found to be sensitive to uranium effluents whereas Neidium alpinum and several species of Gomphonema tolerated this contamination. The relevance of diatoms as ecological indicator was illustrated through the changes in structure of communities induced by the discharge of uranium mining effluents and creates prospects for development of a bioindicator tool for this kind of impairment of water quality.
Assuntos
Diatomáceas/efeitos dos fármacos , Monitoramento Ambiental/métodos , Mineração , Urânio/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/crescimento & desenvolvimento , Ecossistema , FrançaRESUMO
A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations. In this report, we summarize the evidence of multi- and trans-generational effects in non-human biota species that was discussed at the ICRP workshop entitled "Effects of Ionizing Radiation Exposure in Offspring and Next Generations" in June 2022. Epigenetic changes, including changes in DNA methylation, have been observed in trans- and multi-generational irradiation studies in both plants and animals. There were also reports of changes in offspring survival and reproduction. The reported evidence for altered reproduction is an area of potential concern, due to possible effects at the population or ecosystem level. Different considerations are also discussed regarding non-human biota data, such as transferability of data between different species or extending knowledge to humans, differences in species radiosensitivity, the presence of adaptive responses, and dose reconstruction for exposures that occur across multiple generations. Overall, there is a diverse range of available data of the effects in non-human biota, and it will require careful consideration when incorporating this evidence into the system of radiological protection of humans and of the environment.
RESUMO
Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help to comprehend species-specific differences in radiosensitivity. From our previous studies, we found that decrease in reproduction is life stage dependent in the roundworm Caenorhabditis elegans, possibly resulting from an accumulation of damages during germ cell development and gamete differentiation. To go further, we used the same experimental design to assess more precisely the molecular determinants of reproductive toxicity, primarily decreases in gamete number. As before, worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiation throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). To enable cross species extrapolation, conserved molecular pathways across invertebrates and vertebrates were analysed: apoptosis and MAP kinase Ras/ERK (MPK-1), both involved in reproduction and stress responses. Our results showed that these pathways are life-stage dependent, resulting from an accumulation of damages upon chronic exposure to IR throughout the life development. The Ras/ERK pathway was activated in our conditions in the pachytene region of the gonad where it regulates cell fate including apoptosis, but not in the ovulation zone, where it controls oocyte maturation and ovulation. Additionally, assessment of germ cell proliferation via Ras/ERK pathway showed no effect. Finally, a functional analysis of apoptosis revealed that while the decrease of the ovulation rate is caused by DNA-damaged induced apoptosis, this process does not occur in spermatocytes. Thus, sperm decrease seems to be mediated via another mechanism, probably a decrease in germ cell proliferation speed that needs further investigation to better characterize sex-specific responses to IR exposure. These results are of main importance to describe radio-induced reprotoxic effects and contribute as weight of evidence for the AOP #396 "Deposition of ionizing energy leads to population decline via impaired meiosis".
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Feminino , Animais , Masculino , Caenorhabditis elegans/metabolismo , Espermatócitos/metabolismo , Sêmen/metabolismo , Oócitos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismoRESUMO
In the environment, populations are exposed to different kinds of ionizing radiation. Little is known about their modes of action on non-human species, and whether or not they are similar for alpha, beta and gamma radiations, considered as the reference. In this context, tritium effects (beta emitter) under the form of tritiated water (HTO) were investigated in zebrafish, a common model in toxicology and ecotoxicology with a fully sequenced genome. Experiments were conducted on early life stages, considered to be highly sensitive to pollutants, by exposing eggs to 0.4 mGy/h of HTO until 10 days post fertilization. Tritium internalization was quantified, and effects were investigated using a combined approach of transcriptomic and proteomic analyses. Results highlighted similarities in the biological pathways affected by HTO by both techniques, such as defence response, muscle integrity and contraction, and potential visual alterations. These results correlated well with previous data obtained on earlier developmental stages (1 and 4 dpf). Interestingly, HTO effects were partly overlapping those obtained after gamma irradiation, underlying potential common modes of action. This study, therefore, brought a body of evidence on the effects of HTO observed at the molecular level on zebrafish larvae. Further studies could investigate if the effects persist in adult organisms.
Assuntos
Monitoramento de Radiação , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Transcriptoma , Trítio/metabolismo , Proteômica , Larva/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Recent laboratory studies focusing on multigenerational approach demonstrated drastic phenotypic effects after chronic fish irradiation exposure. No irradiation effect at phenotypic scale was observed for F0 (reproductive performances) while early mortality and malformations were observed in F1 offspring whether they were irradiated or not. The objective was to study molecular mechanisms likely to be involved in these phenotypic effects induced by parental irradiation. Thus, F0 adult zebrafish were irradiated for ten days until reproduction and maternal involvement in offspring development was assessed. Levels of maternal provided cortisol and vitellogenin, needed for embryo development, were not impacted by irradiation. However, maternal transcriptome highlighted irradiation effect on processes involved in oocyte development, as well as on essential maternal factors needed for offspring development. Therefore, this study highlighted the importance of parental exposure on offspring fate and of the importance of multigenerational exposure in risk assessment.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Humanos , Peixe-Zebra/genética , Exposição Materna/efeitos adversos , Transcriptoma , Poluentes Químicos da Água/toxicidade , OvárioRESUMO
The main objectives of this study were to evaluate uranium (U) toxicity in the crayfish Procambarus clarkii at a low dose of exposure and to discriminate between the chemotoxicity and radiotoxicity of U. We conducted two sets of experiments using either 30 µg L(-1) of depleted uranium (DU) or (233)U, which differ from each other only in their specific activity (DU=1.7×10(4)Bqg(-1), (233)U=3.57×10(8)Bqg(-1)). The endpoints were oxidative stress responses and mitochondrial functioning in the gills and hepatopancreas, which were measured in terms of enzyme activities and gene expression levels. U accumulation levels were measured in different organs (gills, hepatopancreas, stomach, intestine, green gland, muscles, and carapace), and internal dose rates in the hepatopancreas were compared after DU and (233)U exposures. Significant U accumulation occurred in the organs of P. clarkii, and mitochondrial damage and antioxidant responses were detected. Despite the huge difference (21,000×) in the specific activities of DU and (233)U, few significant differences in biological responses were detected in P. clarkii exposed to these two pollutants. This finding indicates that the radiotoxicity was low compared to the chemotoxicity under our exposure conditions. Finally, genes expression levels were more sensitive markers of U toxicity than enzyme activities.
Assuntos
Astacoidea/enzimologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Urânio/toxicidade , Poluentes da Água/toxicidade , Animais , Biomarcadores/metabolismo , Monitoramento Ambiental/métodos , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo , Estresse Oxidativo , Urânio/metabolismo , Poluentes da Água/metabolismoRESUMO
BACKGROUND: Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION: Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Assuntos
Rotas de Resultados Adversos , Proteção Radiológica , Consenso , Medição de Risco , ReproduçãoRESUMO
The interactions between uranium and four metalloproteins (Apo-HTf, HSA, MT and Apo-EqSF) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 0.05 to 1150) at physiologically relevant conditions of pH. Results showed that fluorescence from the four metalloproteins was quenched by UO(2)(2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of metalloproteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the metalloprotein complexation by uranium could be simulated by two specific sites (L(1) and L(2)). Results showed that the U(VI)-Apo-HTf complexation constant values (log K(1)=7.7, log K(2)=4.6) were slightly higher than those observed for U(VI)-HSA complex (log K(1)=6.1, log K(2)=4.8), U(VI)-MT complex (log K(1)=6.5, log K(2)=5.6) and U(VI)-Apo-EqsF complex (log K(1)=5.3, log K(2)=3.9). PROSECE fitting studies also showed that the complexing capacities of each protein were different: 550 moles of U(VI) are complexed by Apo-EqSF while only 28, 10 and 5 moles of U(VI) are complexed by Apo-HTf, HSA and MT, respectively.
Assuntos
Albuminas/química , Ferritinas/química , Metalotioneína/química , Transferrina/química , Urânio/química , Fluorescência , Concentração de Íons de Hidrogênio , Processamento de Sinais Assistido por Computador , Software , Espectrometria de Fluorescência/métodos , Compostos de Urânio/químicaRESUMO
Concentration of uranium (U), a naturally encountered radioactive element in earth's crust, can be enhanced in freshwater ecosystems (µg.L-1 - mg.L-1) due to various anthropogenic activities. The consequent aquatic organism exposure to U leads to its accumulation in all organs, particularly in the gonad, and in subcellular fractions (mainly the cytosol); then it is known to affect fish at several biological levels, and more particularly, at a reproduction endpoint, with a decrease in the total number of eggs, spawn events and larvae survival. The understanding of U reprotoxicity requires the fine knowledge of its speciation at molecular level, i.e., its interaction with cytosolic biomolecules. In this study, we focus on the U-protein interactions in gonads. A non-denaturating extraction protocol combined with size exclusion chromatography (SEC) allowed the separation of metal-protein complexes in ovaries of U-contaminated wild roaches before their elemental detection (ICP MS). This enables unprecedented information to be obtained about U distribution in ovaries of autochthonous fish, Rutilus rutilus, which is different in some points from that obtained in the model species, Danio rerio under controlled laboratory conditions at a similar concentration level. Finally, the ability to transpose results from model to autochthonous fish was briefly discussed.
Assuntos
Monitoramento de Radiação , Reprodução , Urânio , Poluentes Radioativos da Água , Animais , Cyprinidae , Ecossistema , Feminino , Ovário/química , Reprodução/efeitos dos fármacos , Urânio/farmacocinética , Urânio/toxicidade , Poluentes Radioativos da Água/farmacocinética , Poluentes Radioativos da Água/toxicidade , Peixe-ZebraRESUMO
Living species are chronically exposed to environmental ionizing radiations from sources that can be overexpressed by nuclear accidents. In invertebrates, reproduction is the most radiosensitive studied endpoint, likely to be connected with aging. Surprisingly, aging is a sparsely investigated endpoint after chronic ionizing radiation, whereas understanding it is of fundamental interest in biology and medicine. Indeed, aging and aging-related diseases (e.g., cancer and degenerative diseases) cause about 90% of deaths in developed countries. Therefore, glp-1 sterile Caenorhabditis elegans nematode was used to assess the impact of chronic gamma irradiation on the lifespan. Analyses were performed, at the individual level, on aging and, in order to delve deeper into the mechanisms, at the molecular level, on oxidative damage (carbonylation), biomolecules (lipids, proteins and nucleic acids) and their colocalization. We observed that ionizing radiation accelerates aging (whatever the duration (3-19 days)/dose (0.5-24â¯Gy)/dose rate (7 and 52â¯mGyâ¯h-1) tested) leading to a longevity value equivalent to that of wt nematode (â¼25-30 days). Moreover, the level of protein oxidative damage (carbonylation) turned out to be good cellular biomarker of aging, since it increases with age. Conversely, chronic radiation treatments reduced carbonylation levels and induced neutral lipid catabolism whatever the dose rate and the final delivered dose. Finally, under some conditions a lipid-protein colocalization without any carbonyl was observed; this could be linked to yolk accumulation in glp-1 nematodes. To conclude, we noticed through this study a link between chronic gamma exposure, lifespan shortening and lipid level decrease associated with a decrease in the overall carbonylation.