Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 72(13): 5024-5037, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33893796

RESUMO

Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.


Assuntos
Locos de Características Quantitativas , Setaria (Planta) , Secas , Fenótipo , Setaria (Planta)/genética , Temperatura , Água
2.
Plant Methods ; 18(1): 39, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346269

RESUMO

BACKGROUND: Roots are vital to plant performance because they acquire resources from the soil and provide anchorage. However, it remains difficult to assess root system size and distribution because roots are inaccessible in the soil. Existing methods to phenotype entire root systems range from slow, often destructive, methods applied to relatively small numbers of plants in the field to rapid methods that can be applied to large numbers of plants in controlled environment conditions. Much has been learned recently by extensive sampling of the root crown portion of field-grown plants. But, information on large-scale genetic and environmental variation in the size and distribution of root systems in the field remains a key knowledge gap. Minirhizotrons are the only established, non-destructive technology that can address this need in a standard field trial. Prior experiments have used only modest numbers of minirhizotrons, which has limited testing to small numbers of genotypes or environmental conditions. This study addressed the need for methods to install and collect images from thousands of minirhizotrons and thereby help break the phenotyping bottleneck in the field. RESULTS: Over three growing seasons, methods were developed and refined to install and collect images from up to 3038 minirhizotrons per experiment. Modifications were made to four tractors and hydraulic soil corers mounted to them. High quality installation was achieved at an average rate of up to 84.4 minirhizotron tubes per tractor per day. A set of four commercially available minirhizotron camera systems were each transported by wheelbarrow to allow collection of images of mature maize root systems at an average rate of up to 65.3 tubes per day per camera. This resulted in over 300,000 images being collected in as little as 11 days for a single experiment. CONCLUSION: The scale of minirhizotron installation was increased by two orders of magnitude by simultaneously using four tractor-mounted, hydraulic soil corers with modifications to ensure high quality, rapid operation. Image collection can be achieved at the corresponding scale using commercially available minirhizotron camera systems. Along with recent advances in image analysis, these advances will allow use of minirhizotrons at unprecedented scale to address key knowledge gaps regarding genetic and environmental effects on root system size and distribution in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA