Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 37(2): 365-374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34820905

RESUMO

BACKGROUND: The dystonias are a heterogeneous group of hyperkinetic disorders characterized by sustained or intermittent muscle contractions that cause abnormal movements and/or postures. Although more than 200 causal genes are known, many cases of primary dystonia have no clear genetic cause. OBJECTIVES: To identify the causal gene in a consanguineous family with three siblings affected by a complex persistent generalized dystonia, generalized epilepsy, and mild intellectual disability. METHODS: We performed exome sequencing in the parents and two affected siblings and characterized the expression of the identified gene by immunohistochemistry in control human and zebrafish brains. RESULTS: We identified a novel missense variant (c.142G>A (NM_032192); p.Glu48Lys) in the protein phosphatase 1 regulatory inhibitor subunit 1B gene (PPP1R1B) that was homozygous in all three siblings and heterozygous in the parents. This gene is also known as dopamine and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32) and has been involved in the pathophysiology of abnormal movements. The uncovered variant is absent in public databases and modifies the conserved glutamate 48 localized close to the serine 45 phosphorylation site. The PPP1R1B protein was shown to be expressed in cells and regions involved in movement control, including projection neurons of the caudate-putamen, substantia nigra neuropil, and cerebellar Purkinje cells. The latter cells were also confirmed to be positive for PPP1R1B expression in the zebrafish brain. CONCLUSIONS: We report the association of a PPP1R1B/DARPP-32 variant with generalized dystonia in man. It might be relevant to include the sequencing of this new gene in the diagnosis of patients with otherwise unexplained movement disorders. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Distonia , Distúrbios Distônicos , Animais , Distúrbios Distônicos/genética , Homozigoto , Humanos , Peixe-Zebra
2.
Proc Natl Acad Sci U S A ; 114(44): E9308-E9317, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078390

RESUMO

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Assuntos
Autofagia/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Repetições WD40/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
3.
Hum Mutat ; 40(10): 1826-1840, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116475

RESUMO

Mutations in genes encoding aminoacyl-tRNA synthetases have been reported in several neurological disorders. KARS is a dual localized lysyl-tRNA synthetase and its cytosolic isoform belongs to the multiple aminoacyl-tRNA synthetase complex (MSC). Biallelic mutations in the KARS gene were described in a wide phenotypic spectrum ranging from nonsyndromic deafness to complex impairments. Here, we report on a patient with severe neurological and neurosensory disease investigated by whole-exome sequencing and found to carry biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one being novel, in the KARS gene. The patient presented with an atypical clinical presentation with an optic neuropathy not previously reported. At the cellular level, we show that cytoplasmic KARS was expressed at a lower level in patient cells and displayed decreased interaction with MSC. In vitro, these two KARS variants have a decreased aminoacylation activity compared with wild-type KARS, the p.Pro228Leu being the most affected. Our data suggest that dysfunction of cytoplasmic KARS resulted in a decreased level of translation of the nuclear-encoded lysine-rich proteins belonging to the respiratory chain complex, thus impairing mitochondria functions.


Assuntos
Aminoacil-tRNA Sintetases/genética , Lisina-tRNA Ligase/genética , Mutação , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/genética , Doenças do Nervo Óptico/complicações , Transtornos de Sensação/complicações , Transtornos de Sensação/genética , Alelos , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/metabolismo , Imageamento por Ressonância Magnética , Modelos Moleculares , Doenças do Sistema Nervoso/diagnóstico , Doenças do Nervo Óptico/diagnóstico , Linhagem , Ligação Proteica , Conformação Proteica , Transtornos de Sensação/diagnóstico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Hum Mol Genet ; 26(19): 3736-3748, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934386

RESUMO

Myotubularins (MTMs) are active or dead phosphoinositides phosphatases defining a large protein family conserved through evolution and implicated in different neuromuscular diseases. Loss-of-function mutations in MTM1 cause the severe congenital myopathy called myotubular myopathy (or X-linked centronuclear myopathy) while mutations in the MTM1-related protein MTMR2 cause a recessive Charcot-Marie-Tooth peripheral neuropathy. Here we aimed to determine the functional specificity and redundancy of MTM1 and MTMR2, and to assess their abilities to compensate for a potential therapeutic strategy. Using molecular investigations and heterologous expression of human MTMs in yeast cells and in Mtm1 knockout mice, we characterized several naturally occurring MTMR2 isoforms with different activities. We identified the N-terminal domain as responsible for functional differences between MTM1 and MTMR2. An N-terminal extension observed in MTMR2 is absent in MTM1, and only the short MTMR2 isoform lacking this N-terminal extension behaved similarly to MTM1 in yeast and mice. Moreover, adeno-associated virus-mediated exogenous expression of several MTMR2 isoforms ameliorates the myopathic phenotype owing to MTM1 loss, with increased muscle force, reduced myofiber atrophy, and reduction of the intracellular disorganization hallmarks associated with myotubular myopathy. Noteworthy, the short MTMR2 isoform provided a better rescue when compared with the long MTMR2 isoform. In conclusion, these results point to the molecular basis for MTMs functional specificity. They also provide the proof-of-concept that expression of the neuropathy-associated MTMR2 gene improves the MTM1-associated myopathy, thus identifying MTMR2 as a novel therapeutic target for myotubular myopathy.


Assuntos
Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Miopatias Congênitas Estruturais/enzimologia , Miopatias Congênitas Estruturais/metabolismo , Fenótipo , Domínios Proteicos , Isoformas de Proteínas , Proteínas Tirosina Fosfatases não Receptoras/genética
5.
Am J Hum Genet ; 99(5): 1086-1105, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745833

RESUMO

This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.


Assuntos
Núcleo Celular/genética , Miopatias Distais/genética , Variação Genética , Miopatias Congênitas Estruturais/genética , Oxirredutases/genética , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Estudos de Coortes , Creatina Quinase/genética , Creatina Quinase/metabolismo , Citoplasma/metabolismo , Miopatias Distais/patologia , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Feminino , Flavoproteínas/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Células HEK293 , Humanos , Masculino , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/patologia , Oxirredutases/metabolismo , Linhagem , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peixe-Zebra/genética
6.
Hum Mutat ; 39(7): 983-992, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688594

RESUMO

Ciliopathies represent a wide spectrum of rare diseases with overlapping phenotypes and a high genetic heterogeneity. Among those, IFT140 is implicated in a variety of phenotypes ranging from isolated retinis pigmentosa to more syndromic cases. Using whole-genome sequencing in patients with uncharacterized ciliopathies, we identified a novel recurrent tandem duplication of exon 27-30 (6.7 kb) in IFT140, c.3454-488_4182+2588dup p.(Tyr1152_Thr1394dup), missed by whole-exome sequencing. Pathogenicity of the mutation was assessed on the patients' skin fibroblasts. Several hundreds of patients with a ciliopathy phenotype were screened and biallelic mutations were identified in 11 families representing 12 pathogenic variants of which seven are novel. Among those unrelated families especially with a Mainzer-Saldino syndrome, eight carried the same tandem duplication (two at the homozygous state and six at the heterozygous state). In conclusion, we demonstrated the implication of structural variations in IFT140-related diseases expanding its mutation spectrum. We also provide evidences for a unique genomic event mediated by an Alu-Alu recombination occurring on a shared haplotype. We confirm that whole-genome sequencing can be instrumental in the ability to detect structural variants for genomic disorders.


Assuntos
Proteínas de Transporte/genética , Ataxia Cerebelar/genética , Ciliopatias/genética , Retinose Pigmentar/genética , Sequenciamento Completo do Genoma , Elementos Alu/genética , Ataxia Cerebelar/patologia , Ciliopatias/patologia , Bases de Dados Genéticas , Éxons/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação/genética , Linhagem , Fenótipo , Retinose Pigmentar/patologia
7.
Methods ; 113: 91-104, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725303

RESUMO

By definition, cytosolic aminoacyl-tRNA synthetases (aaRSs) should be restricted to the cytosol of eukaryotic cells where they supply translating ribosomes with their aminoacyl-tRNA substrates. However, it has been shown that other translationally-active compartments like mitochondria and plastids can simultaneously contain the cytosolic aaRS and its corresponding organellar ortholog suggesting that both forms do not share the same organellar function. In addition, a fair number of cytosolic aaRSs have also been found in the nucleus of cells from several species. Hence, these supposedly cytosolic-restricted enzymes have instead the potential to be multi-localized. As expected, in all examples that were studied so far, when the cytosolic aaRS is imported inside an organelle that already contains its bona fide corresponding organellar-restricted aaRSs, the cytosolic form was proven to exert a nonconventional and essential function. Some of these essential functions include regulating homeostasis and protecting against various stresses. It thus becomes critical to assess meticulously the subcellular localization of each of these cytosolic aaRSs to unravel their additional roles. With this objective in mind, we provide here a review on what is currently known about cytosolic aaRSs multi-compartmentalization and we describe all commonly used protocols and procedures for identifying the compartments in which cytosolic aaRSs relocalize in yeast and human cells.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Mitocôndrias/enzimologia , Ribossomos/enzimologia , Saccharomyces cerevisiae/enzimologia , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Anticorpos/química , Western Blotting/métodos , Compartimento Celular , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/ultraestrutura , Citosol/ultraestrutura , Imunofluorescência/métodos , Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Transporte Proteico , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
8.
J Cell Sci ; 128(4): 706-16, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512335

RESUMO

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3 (also known as Tda3), a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten-disease-linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the late endosome to the Golgi. We show that Btn3 endosomal localization depends on the epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitylated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 regulates the sorting function of two adaptors for SNARE proteins, the epsin Ent3 and the Batten-disease-linked protein Btn2.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Sistemas de Transporte de Aminoácidos/genética , Complexo de Golgi/metabolismo , Análise Serial de Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
9.
Int J Mol Sci ; 18(3)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294977

RESUMO

Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Autofagia , Transporte Biológico , Endocitose , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Redes e Vias Metabólicas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/metabolismo , Esteróis/metabolismo
10.
PLoS Genet ; 8(10): e1002965, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071445

RESUMO

Myotubularin MTM1 is a phosphoinositide (PPIn) 3-phosphatase mutated in X-linked centronuclear myopathy (XLCNM; myotubular myopathy). We investigated the involvement of MTM1 enzymatic activity on XLCNM phenotypes. Exogenous expression of human MTM1 in yeast resulted in vacuolar enlargement, as a consequence of its phosphatase activity. Expression of mutants from patients with different clinical progression and determination of PtdIns3P and PtdIns5P cellular levels confirmed the link between vacuolar morphology and MTM1 phosphatase activity, and showed that some disease mutants retain phosphatase activity. Viral gene transfer of phosphatase-dead myotubularin mutants (MTM1(C375S) and MTM1(S376N)) significantly improved most histological signs of XLCNM displayed by a Mtm1-null mouse, at similar levels as wild-type MTM1. Moreover, the MTM1(C375S) mutant improved muscle performance and restored the localization of nuclei, triad alignment, and the desmin intermediate filament network, while it did not normalize PtdIns3P levels, supporting phosphatase-independent roles of MTM1 in maintaining normal muscle performance and organelle positioning in skeletal muscle. Among the different XLCNM signs investigated, we identified only triad shape and fiber size distribution as being partially dependent on MTM1 phosphatase activity. In conclusion, this work uncovers MTM1 roles in the structural organization of muscle fibers that are independent of its enzymatic activity. This underlines that removal of enzymes should be used with care to conclude on the physiological importance of their activity.


Assuntos
Miopatias Congênitas Estruturais/genética , Fenótipo , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Desmina/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Mutação , Miopatias Congênitas Estruturais/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Int J Mol Sci ; 16(1): 1509-25, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25584613

RESUMO

The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo
12.
BMC Genomics ; 13: 297, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22748146

RESUMO

BACKGROUND: Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. RESULTS: Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. CONCLUSIONS: Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa.


Assuntos
Membrana Celular/metabolismo , Genômica/métodos , Transporte Proteico/fisiologia , Proteínas/metabolismo , Evolução Biológica , Citocinese/fisiologia , Filogenia , Proteínas/química , Proteínas/classificação
13.
Arch Microbiol ; 193(7): 515-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21442317

RESUMO

SPI1 is a gene whose expression responds to many environmental stimuli, including entry into stationary phase. We have performed a screening to identify genes that activate SPI1 promoter when overexpressed. The phosphatidylinositol-4-phosphate 5-kinase gene MSS4 was identified as a positive activator of SPI1. Another SPI1 transcriptional regulator isolated was the flavodoxin-like gene YCP4. YCP4 and its homolog RFS1 regulate the expression of many genes during the late stages of growth. The double deletion mutant in YCP4 and its homolog RFS1 has an impact on gene expression related to metabolism by increasing the expression of genes involved in hexose transport and glycolysis, and decreasing expression of genes of amino acid metabolism pathways. Genes related to mating and response to pheromone show a decreased expression in the double mutant, while transcription of genes involved in translational elongation is increased. Deletion of these genes, together with the third member of the family, PST2, has a complex effect on the stress response. For instance, double mutant ycp4Δrfs1Δ has an increased response to oxidative stress, but a decreased tolerance to cell-damaging agent SDS. Additionally, this mutation affects chronological aging and slightly increases fermentative capacity.


Assuntos
Flavodoxina/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fermentação , Flavodoxina/genética , Perfilação da Expressão Gênica , Genes Fúngicos , Glicoproteínas de Membrana/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool) , Regiões Promotoras Genéticas , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Biol Open ; 10(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753324

RESUMO

COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 ß'-COP subunit is mis-targeted in cex1Δ deletion mutant cells. Our data point to the possibility of developing Cex1 yeast-based models to study neurodegenerative disorders linked to pathogenic mutations of its human homologue SCYL1.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Cromatografia Líquida , Complexo I de Proteína do Envoltório/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Complexo de Golgi/metabolismo , Espaço Intracelular , Espectrometria de Massas , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , Transporte Proteico , Proteômica/métodos , Proteínas de Ligação a RNA/genética
15.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164332

RESUMO

The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: 1) yeast Hof1p/mammalian PSTPIP1, 2) yeast Rvs167p/mammalian BIN1, 3) yeast eEF1A/eEF1A1 and eEF1A2 and 4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , Humanos
16.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657755

RESUMO

A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/fisiologia , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico
17.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766723

RESUMO

The Nck-associated protein 1-like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage-specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients' T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.


Assuntos
Síndromes de Imunodeficiência/complicações , Inflamação/complicações , Transtornos Linfoproliferativos/complicações , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Degranulação Celular , Proliferação de Células , Criança , Citotoxicidade Imunológica , Família , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Lactente , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
18.
Eur J Hum Genet ; 28(10): 1403-1413, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467598

RESUMO

Cause of complex dyskinesia remains elusive in some patients. A homozygous missense variant leading to drastic decrease of PDE2A enzymatic activity was reported in one patient with childhood-onset choreodystonia preceded by paroxysmal dyskinesia and associated with cognitive impairment and interictal EEG abnormalities. Here, we report three new cases with biallelic PDE2A variants identified by trio whole-exome sequencing. Mitochondria network was analyzed after Mitotracker™ Red staining in control and mutated primary fibroblasts. Analysis of retrospective video of patients' movement disorder and refinement of phenotype was carried out. We identified a homozygous gain of stop codon variant c.1180C>T; p.(Gln394*) in PDE2A in siblings and compound heterozygous variants in young adult: a missense c.446C>T; p.(Pro149Leu) and splice-site variant c.1922+5G>A predicted and shown to produce an out of frame transcript lacking exon 22. All three patients had cognitive impairment or developmental delay. The phenotype of the two oldest patients, aged 9 and 26, was characterized by childhood-onset refractory paroxysmal dyskinesia initially misdiagnosed as epilepsy due to interictal EEG abnormalities. The youngest patient showed a proven epilepsy at the age of 4 months and no paroxysmal dyskinesia at 15 months. Interestingly, analysis of the fibroblasts with the biallelic variants in PDE2A variants revealed mitochondria network morphology changes. Together with previously reported case, our three patients confirm that biallelic PDE2A variants are a cause of childhood-onset refractory paroxysmal dyskinesia with cognitive impairment, sometimes associated with choreodystonia and interictal baseline EEG abnormalities or epilepsy.


Assuntos
Coreia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Adulto , Alelos , Células Cultivadas , Criança , Coreia/patologia , Códon sem Sentido , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Fibroblastos/metabolismo , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Síndrome
19.
EMBO Mol Med ; 12(7): e11861, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32500975

RESUMO

The ubiquitin-proteasome system degrades ubiquitin-modified proteins to maintain protein homeostasis and to control signalling. Whole-genome sequencing of patients with severe deafness and early-onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient's fibroblasts was however unaffected. Nevertheless, patient's cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient's fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient's cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Catarata/genética , Surdez/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Estresse Fisiológico , Proteínas de Peixe-Zebra/genética , Adolescente , Animais , Catarata/patologia , Criança , Pré-Escolar , Consanguinidade , Surdez/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Fator 1 Nuclear Respiratório/genética , Linhagem , Fenótipo , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Síndrome , Ubiquitina/metabolismo , Peixe-Zebra/genética
20.
Dev Cell ; 5(3): 499-511, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12967568

RESUMO

PtdIns(3,5)P(2) is required for cargo-selective sorting to the vacuolar lumen via the multivesicular body (MVB). Here we show that Ent3p, a yeast epsin N-terminal homology (ENTH) domain-containing protein, is a specific PtdIns(3,5)P(2) effector localized to endosomes. The ENTH domain of Ent3p is essential for its PtdIns(3,5)P(2) binding activity and for its membrane interaction in vitro and in vivo. Ent3p is required for protein sorting into the MVB but not for the internalization step of endocytosis. Ent3p is associated with clathrin and is necessary for normal actin cytoskeleton organization. Our results show that Ent3p is required for protein sorting into intralumenal vesicles of the MVB through PtdIns(3,5)P(2) binding via its ENTH domain.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas , Neuropeptídeos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Alquil e Aril Transferases/metabolismo , Western Blotting , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde , Técnicas In Vitro , Cinética , Proteínas Luminescentes/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Testes de Precipitina , Transporte Proteico , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Alinhamento de Sequência/métodos , Temperatura , Fatores de Tempo , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA