Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Genomics ; 20(1): 328, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039751

RESUMO

BACKGROUND: Growth rate is one of the most important features for aquaculture species and deciphering its regulation mechanism has great significance both in genetics and in economics. Hypothalamus-pituitary growth axis (HP growth axis) or neuro-endocrine axis plays a vital role in growth regulation in different aquaculture animals. RESULTS: In this study, the HP and liver transcriptomes of two female groups (H and L) with phenotypically extreme growth rate were sequenced using RNA-Seq. A total of 30,524 and 22,341 genes were found expressed in the two tissues, respectively. The average expression levels for the two tissues were almost the same, but the median differed significantly. A differential expression analysis between H and L groups identified 173 and 204 differentially expressed genes (DEGs) in HP and liver tissue, respectively. Pathway analysis revealed that DEGs in HP tissue were enriched in regulation of cell proliferation and angiogenesis while in liver tissue these genes were overrepresented in sterol biosynthesis and transportation. Genomic overlapping analyses found that 4 and 5 DEGs were within growth-related QTL in HP and liver tissue respectively. A deeper analysis of these 9 genes revealed 3 genes were functionally linked to the trait of interest. The expression of 2075 lncRNAs in HP tissue and 1490 in liver tissue were also detected, and some of lncRNAs were highly expressed in the two tissues. CONCLUSIONS: Above all, the results of the present study greatly contributed to the knowledge of the regulation of growth and then assisted the design of new selection strategies for bighead carp with improved growth-related traits.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/genética , Hipotálamo/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Hipófise/crescimento & desenvolvimento , Transcriptoma , Animais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/metabolismo , Fígado/metabolismo , Anotação de Sequência Molecular , Fenótipo , Hipófise/metabolismo
2.
BMC Genomics ; 19(1): 230, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609551

RESUMO

BACKGROUND: A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. RESULTS: A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. CONCLUSIONS: We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several candidate growth genes were also identified from the QTL regions by comparative mapping. This genetic map would provide a basis for genome assembly and comparative genomics studies, and those QTL-derived candidate genes and genetic markers are useful genomic resources for marker-assisted selection (MAS) of growth-related traits in the Yangtze River common carp.


Assuntos
Carpas/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Animais , Aquicultura , Carpas/genética , Feminino , Proteínas de Peixes/genética , Ligação Genética , Masculino , Fenótipo
3.
Int J Mol Sci ; 19(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538345

RESUMO

Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1,Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Encéfalo/metabolismo , Carpas/genética , Transcriptoma , Ração Animal , Animais , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Metabolismo Energético , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Pesqueiros , Perfilação da Expressão Gênica
4.
BMC Genomics ; 17: 328, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142172

RESUMO

BACKGROUND: MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. RESULTS: We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. CONCLUSIONS: The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.


Assuntos
Perfilação da Expressão Gênica/métodos , Gônadas/crescimento & desenvolvimento , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Tilápia/crescimento & desenvolvimento , Animais , Sequência de Bases , Sequência Conservada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Gônadas/metabolismo , Masculino , Diferenciação Sexual , Tilápia/genética
5.
Appl Microbiol Biotechnol ; 98(1): 361-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24305740

RESUMO

Possessing three circular chromosomes is a distinct genomic characteristic of Burkholderia cenocepacia AU 1054, a clinically important pathogen in cystic fibrosis. In this study, base composition, codon usage and functional role category were analyzed in the B. cenocepacia AU 1054 genome. Although no bias in the base and codon usage was detected between any two chromosomes, function differences did exist in the genes of each chromosome. Similar base composition and differential functional role categories indicated that genes on these three chromosomes were relatively stable and that a proper division of labor was established. Based on variations in the base or codon usage, four small gene clusters were observed in all of the genes. Multivariate analysis revealed that protein hydrophobicity played a predominant role in shaping base usage bias, while horizontal gene transfer and the gene expression level were the two most important factors that affected the codon usage bias. Interestingly, we also found that these gene clusters were correlated with different biological functions: (i) 45 pyrimidine-leading-codon preferred genes were predominantly involved in regulatory function; (ii) most drug resistance-related genes involved in 826 genes that coding for hydrophobic proteins; (iii) most of the 111 horizontal transfer genes were responsible for genomic plasticity; and (iv) 73 highly expressed genes (predicted by their codon adaptation index values) showed environmental adaptation to cystic fibrosis. Our results showed that genes with base or codon usage bias were affected by mutational pressure and natural selection, and their functions could contribute to drug assistance and transmissible activity in B. cenocepacia.


Assuntos
Burkholderia cenocepacia/genética , Genoma Bacteriano , Família Multigênica , Cromossomos Bacterianos , Códon , Transferência Genética Horizontal , Genes Bacterianos , Mutação , Seleção Genética
6.
Front Genet ; 15: 1365285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689653

RESUMO

Hypoxia is a mounting problem that affects the world's freshwaters, with severe consequence for many species, including death and large economical loss. The hypoxia problem has increased recently due to the combined effects of water eutrophication and global warming. In this study, we investigated the transcriptome atlas for the bony fish Ancherythroculter nigrocauda under hypoxia for 1.5, 3, and 4.5 h and its recovery to normal oxygen levels in heart and brain tissues. We sequenced 21 samples for brain and heart tissues (a total of 42 samples) plus three control samples and obtained an average of 32.40 million raw reads per sample, and 95.24% mapping rate of the filtered clean reads. This robust transcriptome dataset facilitated the discovery of 52,428 new transcripts and 6,609 novel genes. In the heart tissue, the KEGG enrichment analysis showed that genes linked to the Vascular smooth muscle contraction and MAPK and VEGF signaling pathways were notably altered under hypoxia. Re-oxygenation introduced changes in genes associated with abiotic stimulus response and stress regulation. In the heart tissue, weighted gene co-expression network analysis pinpointed a module enriched in insulin receptor pathways that was correlated with hypoxia. Conversely, in the brain tissue, the response to hypoxia was characterized by alterations in the PPAR signaling pathway, and re-oxygenation influenced the mTOR and FoxO signaling pathways. Alternative splicing analysis identified an average of 27,226 and 28,290 events in the heart and brain tissues, respectively, with differential events between control and hypoxia-stressed groups. This study offers a holistic view of transcriptomic adaptations in A. nigrocauda heart and brain tissues under oxygen stress and emphasizes the role of gene expression and alternative splicing in the response mechanisms.

7.
BMC Genomics ; 14: 65, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23368736

RESUMO

BACKGROUND: The genomic basis of teleost phenotypic complexity remains obscure, despite increasing availability of genome and transcriptome sequence data. Fish-specific genome duplication cannot provide sufficient explanation for the morphological complexity of teleosts, considering the relatively large number of extinct basal ray-finned fishes. RESULTS: In this study, we performed comparative genomic analysis to discover the Conserved Teleost-Specific Genes (CTSGs) and orphan genes within zebrafish and found that these two sets of lineage-specific genes may have played important roles during zebrafish embryogenesis. Lineage-specific genes within zebrafish share many of the characteristics of their counterparts in other species: shorter length, fewer exon numbers, higher GC content, and fewer of them have transcript support. Chromosomal location analysis indicated that neither the CTSGs nor the orphan genes were distributed evenly in the chromosomes of zebrafish. The significant enrichment of immunity proteins in CTSGs annotated by gene ontology (GO) or predicted ab initio may imply that defense against pathogens may be an important reason for the diversification of teleosts. The evolutionary origin of the lineage-specific genes was determined and a very high percentage of lineage-specific genes were generated via gene duplications. The temporal and spatial expression profile of lineage-specific genes obtained by expressed sequence tags (EST) and RNA-seq data revealed two novel properties: in addition to being highly tissue-preferred expression, lineage-specific genes are also highly temporally restricted, namely they are expressed in narrower time windows than evolutionarily conserved genes and are specifically enriched in later-stage embryos and early larval stages. CONCLUSIONS: Our study provides the first systematic identification of two different sets of lineage-specific genes within zebrafish and provides valuable information leading towards a better understanding of the molecular mechanisms of the genomic basis of teleost phenotypic complexity for future studies.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Genômica , Peixe-Zebra/genética , Animais , Composição de Bases , Cromossomos/genética , Sequência Conservada , Éxons/genética , Feminino , Duplicação Gênica/genética , Masculino , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/genética , Análise Espaço-Temporal , Especificidade da Espécie , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
8.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743904

RESUMO

DNA methylation has been found to be involved in sex determination and differentiation in many aquaculture species. The Ussuri catfish (Pseudobagrus ussuriensis) is a popular aquaculture fish in China with high economic value in which male-biased sex dimorphism was observed in terms of body size and body weight. In this study, DNA methylation-sensitive RAD sequencing (Methyl-RAD) was used to explore the epigenetic difference between adult male and female samples in brain and gonad tissues. In brain tissues, 5,442,496 methylated cytosine sites were found and 9.94% of these sites were from symmetric CCGG or CCWGG sites. Among these sites, 321 differential DNA methylation sites (DMSs) in 171 genes were identified, while in gonad tissues, 4,043,053 methylated cytosines sites were found in total and 11.70% of them were from CCGG or CCWGG. Among these sites, 78 differential DNA methylation sites were found which were located in 64 genes. We also found several sex-determination genes among these differential methylated genes, such as amh, gsdf and hsd11b2 in brain tissues and slco3a1, socs2 and trim47 in gonad tissues. These results provided evidence for understanding the function of DNA methylation in the sex differentiation in Pseudobagrus ussuriensis, which further deepens the relationship between gene regulation and epigenetics.

9.
Sci China Life Sci ; 65(1): 206-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33948869

RESUMO

Improvement in fish feed conversion efficiency (FCE) is beneficial for sustaining global food fish supplies. Here, we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2 (crhr2), which is involved in hypothalamus-pituitary-interrenal (HPI) axis signaling, is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS III compared with that in the wild gibel carp strain Dongting (DT). This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS III compared with those in strain DT. Furthermore, compromised HPI axis signaling is observed in gibel carp strain CAS III, such as decreased α-melanocyte stimulating hormone protein levels, plasma cortisol content, and stress responses. Moreover, enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS III in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS III. Thus, these studies demonstrate that the genetic markers associated with compromised HPI axis signaling, such as crhr2, are potentially useful for genetic selection toward improvement in farmed fish growth and FCE, which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.


Assuntos
Ração Animal , Cyprinidae/genética , Pesqueiros , Hipófise/metabolismo , Polimorfismo Genético , Receptores de Hormônio Liberador da Corticotropina/genética , Seleção Artificial/genética , Animais , Cyprinidae/fisiologia , Marcadores Genéticos
10.
Nat Ecol Evol ; 6(9): 1354-1366, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817827

RESUMO

Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.


Assuntos
Carpas , Poliploidia , Animais , Genoma , Carpa Dourada/genética , Reprodução/genética
11.
Front Genet ; 12: 728177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552623

RESUMO

Cyprinidae is one of the largest family in freshwater fishes, and it is most intensively cultured fish taxon of the world. However, studies about sex determination in this large family is still rear, and one of the reasons is lack of high quality and complete genome. Here, we used nanopore to sequence the genome of a male bighead carp, obtaining contig N50 = 24.25 Mb, which is one of the best assemblies in Cyprinidae. Five males and five females were re-sequenced, and a male-specific region on LG19 was confirmed. We find this region holds many male-specific markers in other Cyprinidae fishes, such as grass carp and silver carp. Transcriptome analyses of hypothalamus and pituitary tissues showed that several sex-specific differentially expressed genes were associated with steroid biosynthesis. The UCH64E gene, located in the male-specific region on LG19, showed higher expression levels in male than female tissues of bighead carp. The methyl-RAD of hypothalamus tissues between males and females indicated that the sexual methylation differences are significant in bighead carp. We also compared the methylation sites recognized using methyl-RAD and nanopore raw reads and found that approximately 73% of the methylation sites identified using methyl-RAD were within nanopore CpG sites.

12.
Mol Ecol Resour ; 21(3): 912-923, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33191666

RESUMO

The edible silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), which are two of the "Four Domesticated Fish" of China, are cultivated intensively worldwide. Here, we constructed 837- and 845-Mb draft genome assemblies for the silver carp and the bighead carp, respectively, including 24,571 and 24,229 annotated protein-coding genes. Genetic maps, anchoring 71.7% and 83.8% of all scaffolds, were obtained for the silver and bighead carp, respectively. Phylogenetic analysis showed that the bighead carp formed a clade with the silver carp, with an estimated divergence time of 3.6 million years ago; the time of divergence between the silver carp and zebrafish was 50.7 million years ago. An East Asian cyprinid genome-specific chromosome fusion took place ~9.2 million years after this clade diverged from the clade containing the common carp and Sinocyclocheilus. KEGG and GO analyses indicated that the expanded gene families in the silver and bighead carp were associated with diseases, the immune system and environmental adaptations. Genomic regions differentiating the silver and bighead carp populations were detected based on the whole-genome sequences of 42 individuals. Genes associated with the divergent regions were associated with reproductive system development and the development of primary female sexual characteristics. Thus, our results provided a novel systematic genomic analysis of the East Asian cyprinids, as well as the evolution and speciation of the silver carp and bighead carp.


Assuntos
Evolução Biológica , Carpas , Especiação Genética , Animais , Carpas/classificação , Carpas/genética , China , Mapeamento Cromossômico , Feminino , Filogenia , Sequenciamento Completo do Genoma , Peixe-Zebra
13.
BMC Genomics ; 11: 657, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106061

RESUMO

BACKGROUND: Variation of gene number among species indicates that there is a general process of new gene origination. One of the major mechanism providing raw materials for the origin of new genes is gene duplication. Retroposition, as a special type of gene duplication- the RNA-based duplication, has been found to play an important role in new gene evolution in mammals and plants, but little is known about the process in the teleostei genome. RESULTS: Here we screened the zebrafish genome for identification of retrocopies and new chimerical retrogenes and investigated their origination and evolution. We identified 652 retrocopies, of which 440 are intact retrogenes and 212 are pseudogenes. Retrocopies have long been considered evolutionary dead ends without functional significance due to the presumption that retrocopies lack the regulatory element needed for expression. However, 437 transcribed retrocopies were identified from all of the retrocopies. This discovery combined with the substitution analysis suggested that the majority of all retrocopies are subject to negative selection, indicating that most of the retrocopies may be functional retrogenes. Moreover, we found that 95 chimerical retrogenes had recruited new sequences from neighboring genomic regions that formed de novo splice sites, thus generating new intron-containing chimeric genes. Based on our analysis of 38 pairs of orthologs between Cyprinus carpio and Danio rerio, we found that the synonymous substitution rate of zebrafish genes is 4.13×10⁻9 substitution per silent site per year. We also found 10 chimerical retrogenes that were created in the last 10 million years, which is 7.14 times the rate of 0.14 chimerical retrogenes per million years in the primate lineage toward human and 6.25 times the rate of 0.16 chimerical genes per million years in Drosophila. This is among the most rapid rates of generation of chimerical genes, just next to the rice. CONCLUSION: There is compelling evidence that much of the extensive transcriptional activity of retrogenes does not represent transcriptional "noise" but indicates the functionality of these retrogenes. Our results indicate that retroposition created a large amount of new genes in the zebrafish genome, which has contributed significantly to the evolution of the fish genome.


Assuntos
Proteínas de Peixes/genética , Duplicação Gênica/genética , Genes Duplicados/genética , Variação Genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Genoma/genética , Transcrição Gênica
14.
Mar Biotechnol (NY) ; 22(1): 41-53, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31776800

RESUMO

Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) are genetically close aquaculture fish in the Cyprinidae, which have been confirmed to hold XX/XY sex determination. However, genomic locations of potential sex-related loci in these two fishes are still unknown. In this study, a high-resolution genetic linkage map was constructed by using 2976 SNP and 924 microsatellite markers in a F1 full-sib family of bighead carp, the length of which spanned 2022.34 cM with an average inter-marker distance of 0.52 cM. Comparative genomics revealed a high level of genomic synteny between bighead carp and zebrafish as well as grass carp. QTL fine mapping for sex trait was performed based on this linkage map of bighead carp and an unpublished linkage map of silver carp. A map distance of 3.863 cM (69.787-73.650 cM) on LG19 of bighead carp and 4.705 cM (79.096-83.801 cM) on LG21 of silver carp was significantly associated with sex phenotypes, and these two LGs are homologous between two fish species. Fourteen markers harboring in these regions were in strong linkage disequilibrium with the sex phenotype variance explained (PVE) varying from 89 to 100%. Two common markers were mapped on the QTL regions of bighead carp and silver carp, suggesting that these two carp species may have similar genetic bases for sex determination. Eleven potentially sex-related genes were identified within or near the sex QTL markers in two species. This study provided insights into elucidating mechanisms and evolution of sex determination in cyprinid fishes.


Assuntos
Carpas/genética , Locos de Características Quantitativas , Processos de Determinação Sexual/genética , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
15.
Sci Rep ; 9(1): 17506, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767872

RESUMO

High-density genetic map and quantitative trait loci (QTL) mapping are powerful tools for identifying genomic regions that may be responsible for such polygenic trait as growth. A high-density genetic linkage map was constructed by sequencing 198 individuals in a F1 family of silver carp (Hypophthalmichthys molitrix) in this study. This genetic map spans a length of 2,721.07 cM with 3,134 SNPs distributed on 24 linkage groups (LGs). Comparative genomic mapping presented a high level of syntenic relationship between silver carp and zebrafish. We detected one major and nineteen suggestive QTL for 4 growth-related traits (body length, body height, head length and body weight) at 6, 12 and 18 months post hatch (mph), explaining 10.2~19.5% of phenotypic variation. All six QTL for growth traits of 12 mph generally overlapped with QTL for 6 mph, while the majority of QTL for 18 mph were identified on two additional LGs, which may reveal a different genetic modulation during early and late muscle growth stages. Four potential candidate genes were identified from the QTL regions by homology searching of marker sequences against zebrafish genome. Hepcidin, a potential candidate gene identified from a QTL interval on LG16, was significantly associated with growth traits in the analyses of both phenotype-SNP association and mRNA expression between small-size and large-size groups of silver carp. These results provide a basis for elucidating the genetic mechanisms for growth and body formation in silver carp, a world aquaculture fish.


Assuntos
Carpas/crescimento & desenvolvimento , Mapeamento Cromossômico/veterinária , Hepcidinas/genética , Locos de Características Quantitativas , Animais , Estatura , Peso Corporal , Carpas/genética , Ligação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/veterinária
16.
Artigo em Inglês | MEDLINE | ID: mdl-29496578

RESUMO

Follistatin (FST) is a single-chain gonadal protein involving in various biological effects. FST plays important roles in not only ovary development but also body growth, whereas myostatin (MSTN) negatively regulates muscle growth. In this study, FST gene in bighead carp (HynFST) was cloned and characterized. A 5797 bp genomic sequence of HynFST, consisting six exons and five introns were cloned. The full-length cDNA of HynFST (2134 bp) has an open reading fragment encoding a polypeptide of 349 amino acids. Sequence comparison and phylogenetic analysis confirmed that FSTs are conserved throughout the vertebrates and HynFST belongs to FST-1 isoform. Nine single nucleotide polymorphisms (SNPs) of the HynFST were identified and three of them (g.2443 T > C, g.2852 T > C and g.5483A > G) were significantly associated with four growth-related traits. The average body weight of those fish with the combined genotype (CC CC GG) was 12.15-22.63% higher than that of triplotype (TT TT AA) in two bighead carp populations. HynFST was expressed in most of the development stages and various tissues with highest level in ovary. The co-expression results for FST and MSTN in brain and muscle of divergent weight groups showed that FST may inhibit MSTN expression, thus enhancing growth in bighead carp. Our results suggest that FST has significant genetic effects on the regulation of early growth in bighead carp. This study would facilitate the elucidation of multiple functions of FST gene in fish and exploration of the potentials as a gene marker in selective breeding programs for growth of bighead carp.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Cyprinidae/genética , Proteínas de Peixes/genética , Folistatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Peso Corporal , Clonagem Molecular , Éxons/genética , Feminino , Proteínas de Peixes/química , Folistatina/química , Íntrons/genética , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Razão de Masculinidade
17.
DNA Res ; 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315393

RESUMO

Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species.

18.
Mitochondrial DNA B Resour ; 3(2): 827-828, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33474337

RESUMO

In this study, the complete 18,495 bp mitochondrial genome was determined from Rock scallop (Crassadoma gigantea) using next-generation sequencing technology. The complete mitochondrial genome contained 12 protein-coding genes (PCGs), 2 ribosomal RNA genes, 23 transfer RNA genes, without ATP8 and D-loop, which was similar with most mitochondrial genomes of marine bivalve molluscs. Gene annotations, including gene order, genetic code, start and stop codons and codons bias, were identified. Phylogenetic tree was constructed using Neighbor-Joining (NJ) method based on the PCGs showed the present species clustered within the Pteriomorphia clade. This work should be of importance not only for the better understanding of the relationships within Pectinidae, but also for the development of useful genetic markers in Rock scallop aquaculture and restoration efforts.

19.
G3 (Bethesda) ; 7(8): 2473-2487, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28600439

RESUMO

A high-resolution genetic linkage map is essential for a wide range of genetics and genomics studies such as comparative genomics analysis and QTL fine mapping. Crucian carp (Carassius auratus) is widely distributed in Eurasia, and is an important aquaculture fish worldwide. In this study, a high-density genetic linkage map was constructed for crucian carp using 2b-RAD technology. The consensus map contains 8487 SNP markers, assigning to 50 linkage groups (LGs) and spanning 3762.88 cM, with an average marker interval of 0.44 cM and genome coverage of 98.8%. The female map had 4410 SNPs, and spanned 3500.42 cM (0.79 cM/marker), while the male map had 4625 SNPs and spanned 3346.33 cM (0.72 cM/marker). The average recombination ratio of female to male was 2.13:1, and significant male-biased recombination suppressions were observed in LG47 and LG49. Comparative genomics analysis revealed a clear 2:1 syntenic relationship between crucian carp LGs and chromosomes of zebrafish and grass carp, and a 1:1 correspondence, but extensive chromosomal rearrangement, between crucian carp and common carp, providing evidence that crucian carp has experienced a fourth round of whole genome duplication (4R-WGD). Eight chromosome-wide QTL for body weight at 2 months after hatch were detected on five LGs, explaining 10.1-13.2% of the phenotypic variations. Potential candidate growth-related genes, such as an EGF-like domain and TGF-ß, were identified within the QTL intervals. This high-density genetic map and QTL analysis supplies a basis for genome evolutionary studies in cyprinid fishes, genome assembly, and QTL fine mapping for complex traits in crucian carp.


Assuntos
Carpas/genética , Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Aumento de Peso/genética , Animais , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Genoma , Genótipo , Masculino , Sintenia/genética , Peixe-Zebra/genética
20.
Sci Rep ; 7(1): 16971, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209087

RESUMO

QTL is a chromosomal region including single gene or gene clusters that determine a quantitative trait. While feed efficiency is highly important in aquaculture fish, little genetic and genomic progresses have been made for this trait. In this study, we constructed a high-resolution genetic linkage map in a full-sib F1 family of crucian carp (Carassius auratus) consisting of 113 progenies with 8,460 SNP markers assigning onto 50 linkage groups (LGs). This genetic map spanned 4,047.824 cM (0.478 cM/marker) and covered 98.76% of the crucian carp genome. 35 chromosome-wide QTL affecting feed conversion efficiency (FCE, 8 QTL), relative growth rate (RGR, 9 QTL), average daily gain (ADG, 13 QTL) and average daily feed intake (ADFI, 5 QTL) were detected on 14 LGs, explaining 14.0-20.9% of the phenotypic variations. In LGs of LG16, LG25, LG36 and LG49, several QTL affecting different traits clustered together at the identical or close regions of the same linkage group. Seven candidate genes, whose biological functions may involve in the energy metabolism, digestion, biosynthesis and signal transduction, were identified from these QTL intervals by comparative genomics analysis. These results provide a basis for elucidating genetic mechanism of feed efficiency and potential marker-assisted selection in crucian carp.


Assuntos
Ração Animal , Carpa Dourada/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Hibridização Genômica Comparativa , Diploide , Ingestão de Alimentos , Feminino , Ligação Genética , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA