Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Small ; : e2308055, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037766

RESUMO

Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.

2.
Small ; 19(49): e2304440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544921

RESUMO

Microwave (MW) dynamic therapy (MDT) can efficiently eliminate tumor residue resulting from MW thermal therapy. However, MDT is currently in its infancy, and luck of effective MDT sensiters severely limits its clinical therapeutic effect. Herein, based on TiMOF (TM), a high-efficiency MW sensitizer is designed for MW thermo-dynamic therapy. TM can generate heat and cytotoxic reacyive oxygen species (ROS) under MW irradiation and has the potential to be used as an MW sensitizer, while the suboptimal MW dynamic sensitization effect of TM limits its application. Inorder to improve the MW dynamic sensitization performance, a covalent organic framework (COF) with good stability and a large conjugate system is used to cover TM, which is conductive to electron and energy transfer, thus increasing the ROS generation rate and prolonging the ROS lifetime. In addition, loading Ni NPs endow nanomaterials with magnetic resonance imaging capabilities. Therefore, this work develops an MW sensitizer based on TM for the first time, and the mechanism of COF coating to enhance the MW dynamic sensitization of TM is preliminarily explored, which provides a new idea for the further development of MW sensitizer with great potential.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Micro-Ondas , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico
3.
J Nanobiotechnology ; 21(1): 399, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904235

RESUMO

BACKGROUNDS: The novel concept of microwave dynamic therapy (MDT) solves the problem of incomplete tumor eradication caused by non-selective heating and uneven temperature distribution of microwave thermal therapy (MWTT) in clinic, but the poor delivery of microwave sensitizer and the obstacle of tumor hypoxic microenvironment limit the effectiveness of MDT. RESULTS: Herein, we engineer a liquid metal-based nanozyme LM@ZIF@HA (LZH) with eutectic Gallium Indium (EGaIn) as the core, which is coated with CoNi-bimetallic zeolite imidazole framework (ZIF) and hyaluronic acid (HA). The flexibility of the liquid metal and the targeting of HA enable the nanozyme to be effectively endocytosed by tumor cells, solving the problem of poor delivery of microwave sensitizers. Due to the catalase-like activity, the nanozyme catalyze excess H2O2 in the tumor microenvironment to generate O2, alleviating the restriction of the tumor hypoxic microenvironment and promoting the production of ROS under microwave irradiation. In vitro cell experiments, the nanozyme has remarkable targeting effect, oxygen production capacity, and microwave dynamic effect, which effectively solves the defects of MDT. In the constructed patient-derived xenograft (PDX) model, the nanozyme achieves excellent MDT effect, despite the heterogeneity and complexity of the tumor model that is similar to the histological and pathological features of the patient. The tumor volume in the LZH + MW group is only about 1/20 of that in the control group, and the tumor inhibition rate is as high as 95%. CONCLUSION: The synthesized nanozyme effectively solves the defects of MDT, improves the targeted delivery of microwave sensitizers while regulating the hypoxic microenvironment of tumors, and achieves excellent MDT effect in the constructed PDX model, providing a new strategy for clinical cancer treatment.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Micro-Ondas , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Metais/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
4.
J Nanobiotechnology ; 20(1): 512, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463157

RESUMO

BACKGROUNDS: Reversing the immunosuppressive tumor microenvironment (TME) in the tumor is widely deemed to be an effective strategy to improve immune therapy. In particular, the redox balance in TME needs to be well controlled due to its critical role in mediating the functions of various cells, including cancer cells and immune-suppressive cells. RESULTS: Here, we propose an efficient strategy to reshape the redox homeostasis to reverse immunosuppressive TME. Specifically, we developed a microwave-chemo-immunostimulant CMMCP to promote the infiltration of the tumor-T cells by simultaneously reducing the reactive oxygen species (ROS) and glutathione (GSH) and improving the oxygen (O2) levels in TME. The CMMCP was designed by loading chemotherapy drugs cisplatin into the bimetallic Ce-Mn MOF nanoparticles coated with polydopamine. The Ce-Mn MOF nanoparticles can effectively improve the catalytic decomposition of ROS into O2 under microwave irradiation, resulting in overcoming hypoxia and limited ROS generation. Besides, the activity of intracellular GSH in TME was reduced by the redox reaction with Ce-Mn MOF nanoparticles. The reprogrammed TME not only boosts the immunogenic cell death (ICD) induced by cisplatin and microwave hyperthermia but also gives rise to the polarization of pro-tumor M2-type macrophages to the anti-tumor M1-type ones. CONCLUSION: Our in vivo experimental results demonstrate that the microwave-chemo-immunostimulant CMMCP significantly enhances the T cell infiltration and thus improves the antitumor effect. This study presents an easy, safe, and effective strategy for a whole-body antitumor effect after local treatment.


Assuntos
Adjuvantes Imunológicos , Micro-Ondas , Cisplatino , Espécies Reativas de Oxigênio , Fatores Imunológicos , Imunossupressores , Imunoterapia , Oxirredução , Glutationa , Oxigênio
5.
J Nanobiotechnology ; 20(1): 133, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292037

RESUMO

BACKGROUNDS: Microwave sensitization nanoplatform, integrating multiple functional units for improving tumor selectivity, is of great significance for clinical tumor microwave treatment. Lanthanide europium metal organic framework (EuMOF) is expected to be a theranostic nanoplatform owing to its unique luminescent and microwave sensitization properties. However, it is difficult to be applied to complicated biological systems for EuMOF due to its rapid degradation induced by the solvent molecular and ionic environment. In this work, a luminescent EuMOF nanocomposite (EuMOF@ZIF/AP-PEG, named EZAP) was designed, which brought the multifunctional characteristics of microwave sensitization, fluorescence imaging and drug loading. RESULTS: Lamellar EuMOF was synthesized by a hydrothermal method. Through the charge adsorption mechanism, the zeolite imidazole framework (ZIF) structure was intensively assembled on the surface of EuMOF to realize the protection. Then, through in-situ Apatinib drug loading and PEG modification, EZAP nanocomposite was finally obtained. Apatinib (AP) was a kind of chemotherapy drug approved by Food and Drug Administration for targeted therapy of tumors. PEG modification increased long-term circulation of EZAP nanocomposite. The physical and chemical structure and properties of EuMOF@ZIF (EZ) were systematically represented, indicating the successful synthesis of the nanocomposite. The toxic and side effects were negligible at a safe dose. The growth of human liver cancer cells and murine liver cancer cells in vitro was significantly inhibited, and the combined microwave-thermal therapy and chemotherapy in vivo achieved high anti-cancer efficacy. Moreover, EZAP nanocomposite possessed bright red fluorescence, which can be applied for tumor imaging in tumor-bearing mice in vivo. CONCLUSION: Therefore, EZAP nanocomposite showed high microwave sensitization, excellent fluorescence properties and outstanding drug loading capacity, establishing a promising theranostic nanoplatform for tumor therapy and fluorescence imaging. This work proposes a unique strategy to design for the first time a multifunctional nanoplatform with lanthanide metal organic frameworks for biological applications in tumor therapy and diagnosis.


Assuntos
Elementos da Série dos Lantanídeos , Nanocompostos , Animais , Európio , Camundongos , Micro-Ondas , Nanocompostos/química , Imagem Óptica , Medicina de Precisão , Estados Unidos
6.
Mikrochim Acta ; 188(6): 209, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047819

RESUMO

Highly fluorescent hollow ZrO2@CdTe nanoparticles (NPs) were synthesized efficiently via the hydrothermal method. By changing the hydrothermal time of ZrO2@CdTe NP, the peaks of fluorescence spectra measured at fluorescent excitation of 330 nm were at 540 nm, 590 nm, and 640 nm, respectively. Hollow ZrO2 NPs have a uniform core-shell structure with the size of 178 ± 10 nm and shell of 19 ± 4 nm. The as-prepared yellow-ZrO2@CdTe NPs were used to develop lateral flow assay (LFA) for the sensitive and qualitative detection of C-reactive protein (CRP). The visual limit of detection of the LFA for the CRP antigen was 1 µg/L within 20 min, which is 1000-fold lower than that of colloidal gold-based LFA. In addition, a multiplex lateral flow assay (mLFA) was developed using the as-prepared green and red-ZrO2@CdTe NPs for the simultaneous, specific, sensitive, and qualitative detection of CRP and troponin T (cTnT). The visual limits of detection of CRP and cTnT in mLFA were 10 µg/L and 0.1 mg/L, respectively. The excellent performance of ZrO2@CdTe NPs should facilitate their application in point-of-care technology for the detection of other biomarkers.


Assuntos
Proteína C-Reativa/análise , Nanopartículas/química , Espectrometria de Fluorescência/métodos , Troponina T/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Proteína C-Reativa/imunologia , Compostos de Cádmio/química , Cromatografia em Camada Fina , Corantes Fluorescentes/química , Imunoensaio , Limite de Detecção , Telúrio/química , Troponina T/imunologia , Zircônio/química
7.
Nano Lett ; 19(5): 2914-2927, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30929452

RESUMO

Hepatocellular carcinoma (HCC) with metastatic disease is associated with a low survival in clinical practice. Many curative options including liver resection, transplantation, and thermal ablation are effective in local but limited for patients with distant metastasis. In this study, the efficacy, specificity, and safety of P-selectin targeted delivery and microwave (MW) responsive drug release is investigated for development of HCC therapy. By encapsulating doxorubicin (DOX) and MW sensitizer (1-butyl-3-methylimidazolium-l-lactate, BML) into fucoidan conjugated liposomal nanoparticles (TBP@DOX), specific accumulation and prominent release of DOX in orthotopic HCC and lung metastasis are achieved with adjuvant MW exposure. This results in orthotopic HCC growth inhibition that is not only 1.95-fold higher than found for nontargeted BP@DOX and 1.6-fold higher than nonstimuli responsive TP@DOX but is also equivalent to treatment with free DOX at a 10-fold higher dose. Furthermore, the optimum anticancer efficacy against distant lung metastasis and effective prevention of widespread dissemination with a prolonged survival is described. In addition, no adverse metabolic events are identified using the TBP@DOX nanodelivery system despite these events being commonly observed with traditional DOX chemotherapy. Therefore, administering TBP@DOX with MW exposure could potentially enhance the therapeutic efficacy of thermal-chemotherapy of HCC, especially those in the advanced stages.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Selectina-P/antagonistas & inibidores , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lactatos/química , Lactatos/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Micro-Ondas , Nanopartículas/química , Metástase Neoplásica , Selectina-P/química
8.
Nano Lett ; 19(8): 5277-5286, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31331173

RESUMO

The cytotoxic reactive oxygen species (ROS) generated by photoactivated sensitizers have been well explored in tumor therapy for nearly half a century, which is known as photodynamic therapy (PDT). The poor light penetration depth severely hinders PDT as a primary or adjuvant therapy for clinical indication. Whereas microwaves (MWs) are advantageous for deep penetration depth, the MW energy is considerably lower than that required for the activation of any species to induce ROS generation. Herein we find that liquid metal (LM) supernanoparticles activated by MW irradiation can generate ROS, such as ·OH and ·O2. On this basis, we design dual-functional supernanoparticles by loading LMs and an MW heating sensitizer ionic liquid (IL) into mesoporous ZrO2 nanoparticles, which can be activated by MW as the sole energy source for dynamic and thermal therapy concomitantly. The microwave sensitizer opens the door to an entirely novel dynamic treatment for tumors.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Zircônio/uso terapêutico , Animais , Células Hep G2 , Humanos , Líquidos Iônicos/uso terapêutico , Camundongos , Micro-Ondas , Nanopartículas/ultraestrutura , Neoplasias/metabolismo
9.
J Nanobiotechnology ; 17(1): 118, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791353

RESUMO

BACKGROUND: Developing new strategies to reduce the output power of microwave (MW) ablation while keeping anti-tumor effect are highly desirable for the simultaneous achievement of effective tumor killing and avoidance of complications. We find that mild MW irradiation can significantly increase intracellular Ca2+ concentration in the presence of doxorubicin hydrochloride (DOX) and thus induce massive tumor cell apoptosis. Herein, we designed a synergistic nanoplatform that not only amplifies the intracellular Ca2+ concentration and induce cell death under mild MW irradiation but also avoids the side effect of thermal ablation and chemotherapy. RESULTS: The as-made NaCl-DOX@PLGA nanoplatform selectively elevates the temperature of tumor tissue distributed with nanoparticles under low-output MW, which further prompts the release of DOX from the PLGA nanoparticles and tumor cellular uptake of DOX. More importantly, its synergistic effect not only combines thermal ablation and chemotherapy, but also obviously increases the intracellular Ca2+ concentration. Changes of Ca2+ broke the homeostasis of tumor cells, decreased the mitochondrial inner membrane potential and finally induced the cascade of apoptosis under nonlethal temperature. As such, the NaCl-DOX@PLGA efficiently suppressed the tumor cell progression in vivo and in vitro under mild MW irradiation for the triple synergic effect. CONCLUSIONS: This work provides a biocompatible and biodegradable nanoplatform with triple functions to realize the effective tumor killing in unlethal temperature. Those findings provide reliable solution to solve the bottleneck problem bothering clinics about the balance of thermal efficiency and normal tissue protection.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Doxorrubicina/uso terapêutico , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Animais , Feminino , Células Hep G2 , Humanos , Camundongos Nus , Micro-Ondas , Neoplasias/metabolismo , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico
10.
Small ; 12(15): 2046-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26929104

RESUMO

Combining photothermal therapy (PTT) with clinical technology to kill cancer via overcoming the low tumor targeting and poor therapy efficiency has great potential in basic and clinical researches. A brand-new MoS2 nanostructure is designed and fabricated, i.e., layered MoS2 hollow spheres (LMHSs) with strong absorption in near-infrared region (NIR) and high photothermal conversion efficiency via a simple and fast chemical aerosol flow method. Owing to curving layered hollow spherical structure, the as-prepared LMHSs exhibit unique electronic properties comparing with MoS2 nanosheets. In vitro and in vivo studies demonstrate their high photothermal ablation of cell and tumor elimination rate by single NIR light irradiation. Systematic acute toxicity study indicates that these LMHSs have negligible toxic effects to normal tissues and blood. Remarkably, minimally invasive interventional techniques are introduced to improve tumor targeting of PTT agents for the first time. To explore PTT efficiency on orthotopic transplantation tumors, New Zealand white rabbits with VX2 tumor in liver are used as animal models. The effective elimination of tumors is successfully realized by PTT under the guidance of digital subtraction angiography, computed tomography, and thermal imaging, which provides a new way for tumor-targeting delivery and cancer theranostic application.


Assuntos
Hipertermia Induzida , Neoplasias Hepáticas/terapia , Transplante de Fígado , Molibdênio/química , Nanosferas/química , Transplante de Neoplasias , Fototerapia , Angiografia Digital , Animais , Injeções Intra-Arteriais , Neoplasias Hepáticas/diagnóstico por imagem , Camundongos , Nanosferas/ultraestrutura , Coelhos , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Computadorizada por Raios X
11.
J Nanosci Nanotechnol ; 16(3): 2194-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455618

RESUMO

Magnetic fluorescent nanocomposites have attracted much attention because of their merging magnetic and fluorescent properties for biomedical application. However, the procedure of synthesis of magnetic fluorescent nanocomposites is always complicated. In addition, the properties of fluorescent component could be easily influenced by magnetic component, retaining both of the magnetic and fluorescent properties into one single nanoparticle considered to be a significant challenge. Herein, we report one-pot method to synthesize multifunctional magnetic fluorescent Fe3O4@PS@P(AEMH-FITC) nanocomposites for bimodal imaging. The asprepared Fe3O4@PS@P(AEMH-FITC) nanocomposites with well-define spherical core/shell structure were stable properties. Moreover, the Fe3O4@PS@P(AEMH-FITC) nanocomposites displayed efficient fluorescent and magnetic properties, respectively. Meanwhile, the magnetic resonance imaging (MRI) and HePG2 cancer cell fluorescent images experiment results suggested that Fe3O4@PS@P(AEMH-FITC) nanocomposites could be used as MRI contrast agents and Fluorescence Imaging (FLI) agents for bioimaging application. Our investigation paves a facile avenue for synthesized magnetic fluorescent nanostructures with well biocompatibility for potential bioimaging application in MRI and FLI.


Assuntos
Óxido Ferroso-Férrico/química , Fluoresceína-5-Isotiocianato/química , Imageamento por Ressonância Magnética/métodos , Magnetismo , Nanocompostos , Fluorescência , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
J Nanosci Nanotechnol ; 16(3): 2652-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455684

RESUMO

Oil-soluble BN-doped carbon quantum dots (CQDs) were successfully prepared in a novel hot-injection method by using 1,2-Hexadecanediol as carbon precursor and surface passivation agent. The reaction time, temperature, and surface passivation agent were investigated by fluorescence measurements to understand the underlying evolution of CQDs. The doping of N and B were carried out by choosing suitable N and B source, evaluated by their fluorescence properties. The size, morphology and surface properties were observed by TEM, AFM and FTIR measurements. The quantum yields of CQDs were also calculated to investigate the enhanced fluorescence properties. The prepared oil-soluble BN-doped CQDs were easily dispersed into organic solvent, showing great potential to produce optical and sensing devices.


Assuntos
Boro/química , Carbono/química , Nitrogênio/química , Óleos/química , Pontos Quânticos , Solubilidade , Espectrofotometria Ultravioleta
13.
Nanomedicine ; 11(8): 1915-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238077

RESUMO

Mesoporous silica nanoparticles (MSNs) have been proven to be effective drug carriers for oral delivery. However, little attention has been paid to their in vivo biodistribution and toxicity after oral administration. The effect of particle shape on their in vivo behavior is also unknown. In this study, we systematically studied the acute toxicity and biodistribution of three types of MSNs with aspect ratios (ARs) of 1, 1.75 and 5 after oral administration. The effect of particle shape as a key physicochemical parameter of MSNs was discussed. With the increase of AR, MSNs showed decreased in vivo biodegradation, systematic absorption and excretion, especially decreased liver distribution and urinal excretion. During the period of urinal excretion, MSNs induced a shape-dependent renal damage including hemorrhage, vascular congestion and renal tubular necrosis. These findings will enrich the knowledge to rationally engineer bionanomaterials, and bring new insights into nanotoxicity. FROM THE CLINICAL EDITOR: Advances in nanotechnology have resulted in improvement in drug delivery, of which mesoporous silica nanoparticles have been used as carriers for oral drugs. Nonetheless, studies on their absorption, distribution, metabolism, excretion (ADME) and toxicity still need to be performed. In this article, authors evaluated the effects of particle size and shape on in vivo behavior. The findings would shine light on future design of future drug delivery systems.


Assuntos
Nanopartículas/toxicidade , Dióxido de Silício/farmacocinética , Dióxido de Silício/toxicidade , Administração Oral , Animais , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Necrose/etiologia , Necrose/metabolismo , Necrose/patologia , Porosidade , Dióxido de Silício/administração & dosagem , Dióxido de Silício/metabolismo , Distribuição Tecidual
14.
ACS Appl Mater Interfaces ; 16(33): 43694-43703, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39114959

RESUMO

Water scarcity is a global problem and collecting water from the air is a viable solution to this crisis. Inspired by Namib Desert beetle, leaf venation and spider silk, we designed an integrated biomimetic system with hybrid wettability and wettability gradient. The hybrid hydrophilic-hydrophobic wettability design that bionomics desert beetle's back can construct a three-dimensional topography with a water layer on the surface, expanding the contact area with the fog flow and thus improving the droplet trapping efficiency. The venation-like structure with wettability gradient not only provides a planned path for water transportation, but also accelerates water removal under the synergistic effect of gravity and wettability driving force, thus further improving the surface regeneration rate. The collector combines droplet capture, coalescence, transportation, separation, and storage capabilities, which provides new ideas for the design of future high-efficiency fog collectors.

15.
ACS Appl Mater Interfaces ; 16(27): 35740-35751, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918074

RESUMO

Adsorption-based atmospheric water harvesting (AWH) with solar-driven photothermal desorption has become an effective means of solving freshwater scarcity in arid regions due to its low energy consumption and high efficiency. Moisture adsorption and desorption capacities are the most critical properties in AWH, and it is a challenge to improve the rate of moisture adsorption and desorption of composite adsorbents. Therefore, this paper reports a SA/carboxymethyl chitosan (CCS)/C/CaCl2-U composite aerogel adsorbents with simultaneously green, low-cost, degradable, and fast hygroscopicity and desorption kinetics. The composite adsorbent used water-soluble biomass materials sodium alginate (SA) and carboxymethyl chitosan (CCS) as the backbone of the aerogel, constructed a vertically aligned unidirectional pore structure by directional freezing, and introduced nanocarbon powder and moisture-absorbent salt calcium chloride (CaCl2) to improve the solar photothermal performance and water absorption, respectively. The results showed that the composite adsorbent had good water uptake capacity at 30-90% relative humidity (RH), the time to reach the water uptake of 1 g g-1 at 90% RH was only 2.5 h, and the final water uptake rate was up to 1.9 g g-1 within 12 h. Meanwhile, the composite sorbent can be heated and desorbed basically within 1 h at 80 °C and its evaporation efficiency is 1.3 times higher than that of the aerogel sorbent prepared by the conventional method when irradiated with 1000 W m-2 light intensity for 2 h. Therefore, the SA/CCS/C/CaCl2-U composite aerogel adsorbent of this study has a potential that can be applied in AWH due to its environmental friendliness, low cost, and faster hygroscopic desorption kinetics.

16.
ACS Appl Mater Interfaces ; 16(29): 37757-37769, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001806

RESUMO

Superwetting surfaces are often applied in oil/water separation. Hydrogels have been widely prepared as superhydrophilic/underwater superoleophobic materials for oil/water separation since they are naturally hydrophilic. Hydrogels usually need to be combined with porous substrates such as stainless steel mesh (SSM) due to their poor mechanical properties. However, it is usually inevitable that the pores of the substrate are clogged during the actual preparation process, leading to a significant decrease in the flux, which limits its effective application. In this study, acrylic acid (AA), chitosan (CS) and modified silica were utilized to form a layer of dual-network PAA/CS@SiO2 hydrogel by photopolymerization on SSM, followed by a simple and novel ultrasonic-assisted pore-making method to generate numerous pores in situ on the surface of the hydrogel-coated mesh, which led to an increase in water flux from 0 to 70,000 L m-2 h-1 without decreasing the separation efficiency. After 100 separations of a mixture of n-hexane and water, the flux was still higher than 50,000 L m-2 h-1 with a separation efficiency above 99%, which is superior to most of hydrogel-coated meshes reported so far. Moreover, the prepared PAA/CS@SiO2 hydrogel-coated mesh also has good environmental stability, low swelling, and self-cleaning properties. We believe that the strategy of this study will provide a simple new perspective when hydrogels block the substrate pores, resulting in low water flux.

17.
J Colloid Interface Sci ; 659: 178-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38163404

RESUMO

Microwave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ). And a novel microwave-sensitized nanomaterial (GdEuMOF@TPZ, GEMT) is designed. GdEuMOF (GEM) nanoparticles are certified excellent microwave (MW) sensitization performance, thus improving tumor selectivity to achieve MH. Meanwhile MW can aggravate the generation of thrombus and caused local circulatory disturbance of tumor, resulting in the Stage I exacerbated hypoxia environment passively. Due to tumor heterogeneity and uneven hypoxia, GEMT nanoparticles under microwave could actively deplete residual oxygen through the chemical reaction, exacerbating hypoxia level more evenly, thus forming the Stage II of exacerbated hypoxia environment. Consequently, a two-stage exacerbated hypoxia GEMT nanoparticles realize amplifying activation of TPZ, significantly enhance the efficacy of microwave hyperthermia and chemotherapy, and effectively inhibit breast cancer. This research provides insights into the development of progressive nanoengineering strategies for effective breast tumor therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Hipertermia Induzida , Neoplasias , Humanos , Feminino , Tirapazamina/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Micro-Ondas , Neoplasias/terapia , Hipóxia/terapia , Linhagem Celular Tumoral
18.
ACS Nano ; 18(4): 3636-3650, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227493

RESUMO

Microwave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment. The loading of the Ni nanoparticle in MNRC mediates the magnetic loss, introducing the MA in the medical frequency band. The heterointerface formed in the MNRC by nanoengineering induces significant interfacial polarization, increasing the dielectric loss and then enhancing the generated MA performance. Moreover, MNRC with the strong MA performance in the desired frequency range not only enhances the MW thermal effect of MWT but also facilitates the electron and energy transfer, generating reactive oxygen species (ROS) at tumor sites to mediate microwave dynamic therapy (MDT). The strategy of strengthening the MA performance of the sensitizer in the medical frequency band to improve MWT-MDT provides a direction for expanding the clinical application of MWT in tumor treatment.


Assuntos
Síndrome de Cockayne , Neoplasias , Humanos , Micro-Ondas , Transferência de Energia
19.
J Nanosci Nanotechnol ; 13(10): 6506-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245107

RESUMO

Recent advances in design and controllable synthesis of rattle-type silica nanoparticles have led to a dramatic expansion of their potential drug delivery application. However, the relationship between physico-chemical parameters and bio-effects of silica nanoparticles is still unclear. In the present study, we investigated the effect of particle size on acute toxicity caused by intravenously administered silica nanorattles (SNs) in vivo. Above all, we found that SNs with smaller size may have higher toxicity potency. SNs sized 60 nm but not the others induced multi-organs structural damages, such as necrosis, congestion and haemorrhage. Interestingly, the different feeding mode after the fasted treatment induced the divarication of toxicity of 60 nm SNs. Smaller particles induced mortality even at 100 mg/kg dose injection when mice fasted for 12 hours and instantly replenish food. But no death had happened when mice received food with gradually recovery after the same treatment. The results indicate that smaller SNs drained into the intestinal tract with the bile liquids from liver may be reabsorbed into the blood through the impaired intestinal barriers and induce worse re-injure. These findings may provide useful information for the further toxicity and biodistribution research of nanoparticles.


Assuntos
Mucosa Intestinal/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Nanoestruturas , Dióxido de Silício/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão
20.
ACS Nano ; 17(24): 25575-25590, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095158

RESUMO

Aiming at the clinical problems of high recurrence and metastasis rate of triple-negative breast cancer, a divide-and-conquer tactic is developed. The designed nanoactivators enhance microwave thermo-dynamic-chemotherapy to efficiently kill primary tumors, simultaneously ameliorate the immunosuppressive microenvironment, activate the tumor infiltration of T lymphocytes, and enhance the accumulation and penetration of PD-1/PD-L1 immune agents, ultimately boosting the efficacy of immune checkpoint blocking therapy to achieve efficient inhibition of distal tumors and metastases. Metal-organic framework (MOF)-based MPPT nano-activator is synthesized by packaging chemotherapeutic drug Pyrotinib and immunosuppressant PD-1/PD-L1 inhibitor 2 into MnCa-MOF and then coupling target molecule triphenylphosphine, which significantly improved the accumulation and penetration of Pyrotinib and immunosuppressant in tumors. In addition to the combined treatment of microwave thermo-dynamic-chemotherapy under microwave irradiation, Mn2+ in the nano-activator comprehensively promotes the cGAS-STING pathway to activate innate immunity, microwave therapy, and hypoxia relief are combined to ameliorate the tumor immunosuppressive microenvironment. The released Pyrotinib down-regulates epidermal growth factor receptor and its downstream pathways PI3K/AKT/mTOR and MAPK/ERK signaling pathways to maximize the therapeutic effect of immune checkpoint blocking, which helps to enhance the antitumor efficacy and promote long-term memory immunity. This nano-activator offers a generally promising paradigm for existing clinical triple-negative breast cancer treatment through a divide-and-conquer strategy.


Assuntos
Estruturas Metalorgânicas , Neoplasias de Mama Triplo Negativas , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Micro-Ondas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor de Morte Celular Programada 1 , Fosfatidilinositol 3-Quinases , Imunossupressores/farmacologia , Microambiente Tumoral , Imunoterapia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA