Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 129(6): 925-934, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532831

RESUMO

BACKGROUND: The PD-L1 on tumor cell-derived small extracellular vesicles (sEVs) can suppress the proliferation and cytokine production of T cells. However, PD-L1 can also be expressed by non-tumor cells. The present study is designed to test whether immunocytes release immunosuppressive PD-L1-positive sEVs. METHODS: sEVs were isolated from different clinical samples of head and neck squamous cell carcinoma (HNSCC) patients, the level and cellular origins of PD-L1-positive sEVs were assessed. Co-expression of CD80 on PD-L1-positive sEVs was examined to evaluate the immunosuppressive and tumor-promotive effects. RESULTS: PD-L1-positive sEVs in HNSCC patients had various cellular origins, including tumor cell, T cell, B cell, dendritic cell and monocyte/macrophage. However, PD-L1-positive sEVs derived from immune cells did not exert immunosuppressive functions due to the co-expression of CD80. It was verified that co-expression of CD80 disrupted the binding of sEV PD-L1 to its receptor PD-1 on T cells and attenuated the immunosuppression mediated by sEV PD-L1 both in vitro and in vivo. CONCLUSION: The study suggests that PD-L1-positive sEVs have the cellular origin and functional heterogeneity. Co-expression of CD80 could restrict the immunosuppressive effect of sEV PD-L1. A greater understanding of PD-L1-positive sEV subsets is required to further improve their clinical application.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígeno B7-H1/metabolismo , Linfócitos T , Vesículas Extracelulares/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685910

RESUMO

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Receptores ErbB/genética , Proteínas rab27 de Ligação ao GTP
3.
Sensors (Basel) ; 18(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453508

RESUMO

An accurate and fast simulation tool plays an important role in the design of wireless passive impedance-loaded surface acoustic wave (SAW) sensors which have received much attention recently. This paper presents a finite transducer analysis method for wireless passive impedance-loaded SAW sensors. The finite transducer analysis method uses a numerically combined finite element method-boundary element method (FEM/BEM) model to analyze non-periodic transducers. In non-periodic transducers, FEM/BEM was the most accurate analysis method until now, however this method consumes central processing unit (CPU) time. This paper presents a faster algorithm to calculate the bulk wave part of the equation coefficient which usually requires a long time. A complete non-periodic FEM/BEM model of the impedance sensors was constructed. Modifications were made to the final equations in the FEM/BEM model to adjust for the impedance variation of the sensors. Compared with the conventional method, the proposed method reduces the computation time efficiently while maintaining the same high degree of accuracy. Simulations and their comparisons with experimental results for test devices are shown to prove the effectiveness of the analysis method.

4.
Mater Horiz ; 11(3): 626-645, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078479

RESUMO

The discovery of unconventional scale-free ferroelectricity in HfO2-based fluorite thin films has attracted great attention in recent years for their promising applications in low-power logic and nonvolatile memories. The ferroelectricity of HfO2 is intrinsically originated from the widely accepted ferroelectric metastable orthorhombic Pca21 phase. In the last decade, defect-doping/solid solution has shown excellent prospects in enhancing and stabilizing the ferroelectricity via isovalent or aliovalent defect-engineering. Here, the recent advances in defect-engineered HfO2-based ferroelectrics are first reviewed, including progress in mono-ionic doping and mixed ion-doping. Then, the defect-lattice correlation, the point-defect promoted phase transition kinetics, and the interface-engineered dynamic behaviour of oxygen vacancy are summarized. In addition, thin film preparation and ion bombardment doping are summarized. Finally, the outlook and challenges are discussed. A multiscale structural optimization approach is suggested for further property optimization. This article not only covers an overview of the state-of-art advances of defects in fluorite ferroelectrics, but also future prospects that may inspire their further property-optimization via defect-engineering.

5.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062533

RESUMO

In Asian populations with non-small-cell lung cancer (NSCLC), EGFR mutations are highly prevalent, occurring in roughly half of these patients. Studies have revealed that individuals with EGFR mutation typically fare worse with immunotherapy. In patients who received EGFR tyrosine kinase inhibitor (TKI) treatment followed by anti-PD-1 therapy, poor results were observed. The underlying mechanism remains unclear. We used high-resolution flow cytometry and ELISA to detect the circulating level of small extracellular vesicle (sEV) PD-L1 in NSCLC individuals with EGFR mutations before and after receiving TKIs. The secretion amount of sEV PD-L1 of lung cancer cell lines with EGFR mutations under TKI treatment or not were detected using high-resolution flow cytometry and Western blotting. The results revealed that patients harboring EGFR mutations exhibit increased levels of sEV PD-L1 in circulation, which inversely correlated with the presence of CD8+ T cells in tumor tissues. Furthermore, tumor cells carrying EGFR mutations secrete a higher quantity of PD-L1-positive sEVs. TKI treatment appeared to amplify the levels of PD-L1-positive sEVs in the bloodstream. Mutation-induced and TKI-induced sEVs substantially impaired the functionality of CD8+ T cells. Importantly, our findings indicated that EGFR mutations and TKI therapies promote secretion of PD-L1-positive sEVs via distinct molecular mechanisms, namely the HRS and ALIX pathways, respectively. In conclusion, the increased secretion of PD-L1-positive sEVs, prompted by genetic alterations and TKI administration, may contribute to the limited efficacy of immunotherapy observed in EGFR-mutant patients and patients who have received TKI treatment.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Vesículas Extracelulares , Neoplasias Pulmonares , Mutação , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Feminino , Linhagem Celular Tumoral , Masculino , Pessoa de Meia-Idade , Idoso , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Terapia de Imunossupressão
6.
Cancer Lett ; 591: 216897, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631664

RESUMO

Small extracellular vesicles (sEVs) residing at tumor tissues are valuable specimens for biopsy. Tumor heterogeneity is common across all cancer types, but the heterogeneity of tumor tissue-derived sEVs (Ti-sEVs) is undefined. This study aims to discover the spatial distributions of Ti-sEVs in oral squamous cell carcinoma (OSCC) tissues and explore how these vesicle distributions affect the patients' prognosis. Multi-regional sampling enabled us to uncover that Ti-sEVs' accumulation at peritumoral sites correlates with a higher disease-free survival rate, and conversely, sparse peritumoral Ti-sEVs tend to forecast a higher risk of relapse. Of those relapsed patients, Ti-sEVs strongly bind to extracellular matrix and subsequently degrade it for allowing themselves enter the bloodstream rather than staying in situ. In advanced OSCC patients, the quantity and spatial distribution of Ti-sEVs prior to anti-PD-1 treatment, as well as the temporal variance of Ti-sEVs before and after immunotherapy, strongly map the clinical response and can help to distinguish the patients with shrinking tumors from those with growing tumors. Our work elucidates the correlation of spatiotemporal features of Ti-sEVs with patients' therapeutic outcomes and exhibit the potential for using Ti-sEVs as a predictor to forecast prognosis and screen the responders to anti-PD-1 therapy.


Assuntos
Vesículas Extracelulares , Neoplasias Bucais , Recidiva Local de Neoplasia , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Recidiva Local de Neoplasia/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Intervalo Livre de Doença , Adulto
7.
Nat Commun ; 15(1): 3884, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719909

RESUMO

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Assuntos
Antígeno B7-1 , Antígeno B7-H1 , Vesículas Extracelulares , Receptor de Morte Celular Programada 1 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Camundongos , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Tolerância Imunológica , Camundongos Endogâmicos C57BL , Masculino , Microambiente Tumoral/imunologia
8.
ACS Appl Mater Interfaces ; 15(14): 18065-18073, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996275

RESUMO

As an alternative to conventional vapor-compression refrigeration, cooling devices based on electrocaloric (EC) materials are environmentally friendly and highly efficient, which are promising in realizing solid-state cooling. Lead-free ferroelectric ceramics with competitive EC performance are urgently desirable for EC cooling devices. In the past few decades, constructing phase coexistence and high polarizability have been two crucial factors in optimizing the EC performance. Different from the external stress generated through heavy equipment and inner interface stress caused by complex interface structures, the internal lattice stress induced by ion substitution engineering is a relatively simple and efficient means to tune the phase structure and polarizability. In this work, we introduce low-radius Li+ into BaZr0.2Ti0.8O3 (BZT) to form a particular A-site substituted cell structure, leading to a change of the internal lattice stress. With the increase of lattice stress, the fraction of the rhombohedral phase in the rhombohedral-cubic (R-C) coexisting system and ferroelectricity are all pronouncedly enhanced for the Li2CO3-doped sample, resulting in the significant enhancement of saturated polarization (Ps) as well as EC performance [e.g., adiabatic temperature change (ΔT) and isothermal entropy change (ΔS)]. Under the same conditions (i.e., 333 K and 70 kV cm-1), the ΔT of 5.7 mol % Li2CO3-doped BZT is 1.37 K, which is larger than that of the pure BZT ceramics (0.61 K). Consequently, in cooperation with the great improvement of electric field breakdown strength (Eb) from 70 to 150 kV cm-1, 5.7 mol % Li2CO3-doped BZT achieved a large ΔT of 2.26 K at a temperature of 333 K, which is a competitive performance in the field of electrocaloric effect (ECE). This work provides a simple but effective approach to designing high-performance electrocaloric materials for next-generation refrigeration.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36894512

RESUMO

NASA has detected H2S in the persistently shadowed region of the lunar South Pole through NIR and UV/vis spectroscopy remotely, but in situ detection is generally considered to be more accurate and convincing. However, subzero temperatures in space drastically reduce chemisorbed oxygen ions for gas sensing reactions, making gas sensing at subzero temperature something that has rarely been attempted. Herein, we report an in situ semiconductor H2S gas sensor assisted by UV illumination at subzero temperature. We constructed a g-C3N4 network to wrap the porous Sb doped SnO2 microspheres to form type II heterojunctions, which facilitate the separation and transport of photoinduced charge carriers under UV irradiation. This UV-driven technique affords the gas sensor a fast response time of 14 s and a response value of 20.1 toward 2 ppm H2S at -20 °C, realizing the sensitive response of the semiconductor gas sensor at subzero temperature for the first time. Both the experimental observations and theoretical calculation results provide evidence that UV irradiation and the formation of type II heterojunctions together promote the performance at subzero temperature. This work fills the gap of semiconductor gas sensors working at subzero temperature and suggests a feasible method for deep space gas detection.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36914377

RESUMO

Antiferroelectric materials are promising to be used for power capacitive devices. To improve the energy storage performance, solid-solution and defect engineering are widely used to suppress the long-range order by introducing local heterogeneities. However, both methods generally deteriorate either the maximum polarization or breakdown electric field due to damaged intrinsic polarization or increased leakage. Here, we show that forming defect-dipole clusters by A-B site acceptor-donor co-doping in antiferroelectrics can comprehensively enhance the energy storage performance. We took the La-Mn co-doped (Pb0.9Ba0.04La0.04)(Zr0.65Sn0.3Ti0.05)O3 (PBLZST) as an example. For co-doping with unequal amounts, high dielectric loss, impurity phase, and decreased polarization were observed. By contrast, La and Mn in an equal amount of co-doping can significantly improve the overall energy storage performance. An over 48% increasement in both the maximum polarization (62.7 µC/cm2) and breakdown electric field (242.6 kV/cm) was obtained in 1 mol % La and 1 mol % Mn equally co-doped PBLZST, followed by a nearly two-time enhancement in Wrec (6.52 J/cm3) compared with that of the pure matrix. Moreover, a high energy storage efficiency of 86.3% with an enhanced temperature stability over a wide temperature range can be achieved. The defect-dipole clusters associated with charge-compensated co-doping are suggested to contribute to an enhanced dielectric permittivity, linear polarization behavior, and maximum polarization strength compared with that of the unequal co-doping cases. The defect-dipole clusters are suggested to couple with the host, leading to a high energy storage performance. The proposed strategy is believed to be applicable to modify the energy storage behavior of antiferroelectrics.

11.
Int J Oral Sci ; 14(1): 47, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36167732

RESUMO

Interferon-γ (IFN-γ), a key effector molecule in anti-tumor immune response, has been well documented to correlate with the intratumoral infiltration of immune cells. Of interest, however, a high level of IFN-γ has been reported in salivary adenoid cystic carcinoma (SACC), which is actually a type of immunologically cold cancer with few infiltrated immune cells. Investigating the functional significance of IFN-γ in SACC would help to explain such a paradoxical phenomenon. In the present study, we revealed that, compared to oral squamous cell carcinoma cells (a type of immunologically hot cancer), SACC cells were less sensitive to the growth-inhibition effect of IFN-γ. Moreover, the migration and invasion abilities of SACC cells were obviously enhanced upon IFN-γ treatment. In addition, our results revealed that exposure to IFN-γ significantly up-regulated the level of programmed death ligand 1 (PD-L1) on SACC cell-derived small extracellular vesicles (sEVs), which subsequently induced the apoptosis of CD8+ T cells through antagonizing PD-1. Importantly, it was also found that SACC patients with higher levels of plasma IFN-γ also had higher levels of circulating sEVs that carried PD-L1 on their surface. Our study unveils a mechanism that IFN-γ induces immunosuppression in SACC via sEV PD-L1, which would account for the scarce immune cell infiltration and insensitivity to immunotherapy.


Assuntos
Carcinoma Adenoide Cístico , Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias das Glândulas Salivares , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Humanos , Terapia de Imunossupressão , Interferon gama/metabolismo , Interferon gama/farmacologia , Neoplasias Bucais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias das Glândulas Salivares/patologia
12.
J Extracell Vesicles ; 11(4): e12214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35436039

RESUMO

To accurately identify the functions of tumour-cell-derived extracellular vesicles (T-EVs), EVs directly isolated from tumour tissues are much preferred over those derived from in vitro cultured tumour cell lines. However, the functional analysis of T-EVs has still been severely limited by the difficulty in selective isolation of T-EVs from tissue-derived heterogeneous EVs, which also contain non-tumour cell-derived EVs. We here establish an untouched isolation strategy that specifically collects natural T-EVs from tumour tissues by removing non-tumour-cell-derived EVs. Different from traditional immunomagnetic separation, our isolation materials are directly bound to undesired non-tumour-cell-derived EVs, preserving the natural properties of T-EVs. Using this strategy, we reveal the distinct performances of tissue-derived T-EVs in organotropism to lymph nodes, immunosuppression and angiogenesis. The present work, which takes an extraordinary step forward in the isolation of EV subpopulation from tumour tissues, would dramatically accelerate the investigation of EV heterogeneity.


Assuntos
Vesículas Extracelulares , Neoplasias , Vesículas Extracelulares/metabolismo , Humanos , Terapia de Imunossupressão , Neoplasias/metabolismo
13.
Food Funct ; 13(11): 6233-6243, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587126

RESUMO

The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.


Assuntos
Chenopodium quinoa , Hordeum , Vigna , Aminoácidos/metabolismo , Chenopodium quinoa/química , Colecistocinina/metabolismo , Digestão , Células Enteroendócrinas , Hordeum/metabolismo , Nitrogênio/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Receptores de Detecção de Cálcio/metabolismo
14.
Adv Sci (Weinh) ; 9(13): e2105368, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240724

RESUMO

In the past century, ferroelectrics are well known in electroceramics and microelectronics for their unique ferroelectric, piezoelectric, pyroelectric, and photovoltaic effects. Nowadays, the advances in understanding and tuning of these properties have greatly promoted a broader application potential especially in energy and environmental fields, by harvesting solar, mechanical, and heat energies. For example, high piezoelectricity and high pyroelectricity can be designed by defect or microstructure engineering for piezo- and pyro-catalyst, respectively. Moreover, highly piezoelectric and broadband (UV-Vis-NIR) light-responsive ferroelectrics can be designed via defect engineering, giving rise to a new concept of photoferroelectrics for efficient photocatalysis, piezocatalysis, pyrocatalysis, and related cocatalysis. This article first summarizes the recent developments in ferroelectrics in terms of piezoelectricity, pyroelectricity, and photovoltaic effects based on defect and microstructure engineering. Then, the potential applications in energy generation (i.e., photovoltaic effect, H2 generation, and self-powered multisource energy harvesting and signal sensing) and environmental protection (i.e., photo-piezo-pyro- cocatalytic dye degradation and CO2 reduction) are reviewed. Finally, the outlook and challenges are discussed. This article not only covers an overview of the state-of-art advances of ferroelectrics, but also prospects their applications in coping with energy crisis and environmental pollution.


Assuntos
Conservação de Recursos Energéticos , Poluição Ambiental , Catálise , Conservação de Recursos Energéticos/tendências , Engenharia , Fenômenos Físicos
15.
Environ Sci Pollut Res Int ; 29(23): 34861-34873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35041166

RESUMO

The design of highly efficient photoca talysts for clean energy production and environmental remediation are the grand challenges of scientific research. Herein, TiO2@MIL53Fe and CeO2@MIL53Fe composite photocatalysts are synthesized via solvothermal technique. The SEM and TEM micrographs reveal that TiO2 and CeO2 nanoparticles are vertically grown onto the surface of MIL53Fe MOF. Further, HRTEM micrograph confirmed the formation of heterojunction. It has been investigated that the resultant TiO2@MIL53Fe and CeO2@MIL53Fe photocatalysts exhibit remarkably improved visible light activities for H2 production and 2,4-dichlorophenol (2,4-DCP) degradation in comparison to the bare MIL53Fe photocatalyst. The enhanced photoactivities of the fabricated TiO2@MIL53Fe and CeO2@MIL53Fe photocatalysts are attributed to significantly promoted charge separation as confirmed via the surface photo voltage (SPV) and photoluminescence (PL) results. Further, the photocatalysts exhibit high stability and reusability as confirmed via the recyclable tests. This work will promote the design of MOF-based efficient photocatalysts for clean energy production and environment purification.

16.
Nanoscale ; 14(12): 4548-4556, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266487

RESUMO

Structure and surface modification of semiconductor materials are of great importance in gas sensors. In this study, a facile citric acid-assisted solvothermal method via a precise calcination process was leveraged to synthesize sponge-like loose and porous SnO2 microspheres with rich oxygen vacancies (denoted as LP-SnO2-Ov). When this material was used in a gas sensor, it exhibited an extremely high response to 10 ppm hydrogen sulfide gas at room temperature (Ra/Rg = 9688), which was 54 times higher than that of commercial SnO2. Furthermore, the response time of LP-SnO2-Ov was 5 s, while the recovery time was 177 s. Moreover, it displayed such high selectivity and stability for hydrogen sulfide gas that its properties remained almost unchanged after 1 month. This method paves a new way to fabricate materials possessing a sponge-like loose and porous structure with oxygen vacancies, which is promising for many other scientific fields such as lithium-ion batteries and photocatalysis.

17.
Comput Methods Programs Biomed ; 213: 106500, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768234

RESUMO

BACKGROUND AND OBJECTIVE: Research on automatic auscultation diagnosis of COVID-19 has not yet been developed. We therefore aimed to engineer a deep learning approach for the automated grading diagnosis of COVID-19 by pulmonary auscultation analysis. METHODS: 172 confirmed cases of COVID-19 in Tongji Hospital were divided into moderate, severe and critical group. Pulmonary auscultation were recorded in 6-10 sites per patient through 3M littmann stethoscope and the data were transferred to computer to construct the dataset. Convolutional neural network (CNN) were designed to generate classifications of the auscultation. F1 score, the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity and specificity were quantified. Another 45 normal patients were served as control group. RESULTS: There are about 56.52%, 59.46% and 78.85% abnormal auscultation in the moderate, severe and critical groups respectively. The model showed promising performance with an averaged F1 scores (0.9938 95% CI 0.9923-0.9952), AUC ROC score (0.9999 95% CI 0.9998-1.0000), sensitivity (0.9938 95% CI 0.9910-0.9965) and specificity (0.9979 95% CI 0.9970-0.9988) in identifying the COVID-19 patients among normal, moderate, severe and critical group. It is capable in identifying crackles, wheezes, phlegm sounds with an averaged F1 scores (0.9475 95% CI 0.9440-0.9508), AUC ROC score (0.9762 95% CI 0.9848-0.9865), sensitivity (0.9482 95% CI 0.9393-0.9578) and specificity (0.9835 95% CI 0.9806-0.9863). CONCLUSIONS: Our model is accurate and efficient in automatically diagnosing COVID-19 according to different categories, laying a promising foundation for AI-enabled auscultation diagnosing systems for lung diseases in clinical applications.


Assuntos
COVID-19 , Algoritmos , Inteligência Artificial , Auscultação , Estudos de Coortes , Humanos , Curva ROC , SARS-CoV-2
18.
ACS Appl Mater Interfaces ; 13(32): 38194-38201, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342445

RESUMO

Lithium loss during the initial charge process inevitably reduces the capacity and energy density of lithium-ion batteries. Cathode additives are favored with respect to their controllable prelithiation degree and scalable application; however, the insulating nature of their delithiation products retards electrode reaction kinetics in subsequent cycles. Herein, we propose a prelithiation separator by modifying a commercial separator with a Li2S/Co nanocomposite to compensate for the initial capacity loss. The Li2S/Co coating layer extracts active lithium ion during the charge process and shows a delithiation capacity of 993 mA h g-1. When paired with a LiFePO4|graphite full cell, the reversible capacity is increased from 112.6 to 150.3 mA h g-1, leading to a 29.5% boost in the energy density. The as-prepared pouch cell also demonstrates a stable cycling performance. The excellent electrochemical performance and the scalable production of the prelithiation separator reveal its great potential in lithium-ion battery industry application.

19.
J Colloid Interface Sci ; 599: 484-496, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964694

RESUMO

In this work, g-C3N4 based ternary composite (CeO2/CN/NH2-MIL-101(Fe)) has been fabricated via hydrothermal and wet-chemical methods. The composite showed superior photoactivities for H2O reduction to produce H2 and 2,4-dichlorophenol (2,4-DCP) degradation. The amount of H2 evolved over the composite under visible and UV-visible irradiations is 147.4 µmol·g-1·h-1 and 556.2 µmol·g-1·h-1, respectively. Further, the photocatalyst degraded 87% of 2,4-DCP in 2 hrs under visible light irradiations. The improved photoactivities are accredited to the synergistic-effects caused by the proper band alignment with close interfacial contact of the three components that significantly promoted charge transfer and separation. The 2,4-DCP degradation over the composite is dominated by OH radical rather than h+ and O2- as investigated by scavenger trapping experiments. This is further supported by the electron para-magnetic resonance (EPR) study. This work provides new directions for the development of g-C3N4 based highly efficient ternary composite materials for clean energy generation and pollution control.

20.
J Hazard Mater ; 397: 122708, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361672

RESUMO

In this work, a Z-scheme BiFeO3-g-C3N4-WO3 (BFO-CN-WO) photocatalyst has been synthesized via a wet chemical method and utilized in photocatalysis for hydrogen generation and 2,4-dichlorophenol (2,4-DCP) degradation under visible light irradiation. The resultant photocatalyst showed 90 µmol·h-1 g-1 H2 evolution activity and 63% 2,4-DCP degradation performance, which is 12 and 4.2 times higher than the pristine g-C3N4 respectively. The fascinating photocatalytic performance is attributed to the strong interfacial contact between g-C3N4 and the coupled BiFeO3 and WO3 component, which greatly improved the visible light absorption and charge carriers' separation. The designed Z-scheme heterojunction is a successful strategy for enhancing the separation efficiency of photo-induced charge carriers at the interface while retaining outstanding redox ability. During 2,4-DCP degradation, LC/MS technique was used to detect the reaction intermediates. According to the LC/MS results, several new intermediates such as 2,3-dichloro-6-(2,4-dichlorophenoxy)phenol (m/z = 306), 2,4-dichlorophenyl hydrogen carbonate (m/z = 207), 2,4-dichlorobenzen-1,3-diol (m/z = 177) and phenyl hydrogen carbonate (m/z = 137) were detected. Based on these intermediates, 2,4-DCP degradation pathway is proposed. The fluorescence (FL) and electron paramagnetic resonance (EPR) results reveal that the •OH plays an important role in the 2,4-DCP degradation. The fabricated photocatalyst can be utilized in the field of photocatalysis for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA