Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2311861, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708808

RESUMO

Low-range light absorption and rapid recombination of photo-generated charge carriers have prevented the occurrence of effective and applicable photocatalysis for decades. Quantum dots (QDs) offer a solution due to their size-controlled photon properties and charge separation capabilities. Herein, well-dispersed interstitial nitrogen-doped TiO2 QDs with stable oxygen vacancies (N-TiO2-x-VO) are fabricated by using a low-temperature, annealing-assisted hydrothermal method. Remarkably, electrostatic repulsion prevented aggregation arising from negative charges accumulated in situ on the surface of N-TiO2-x-VO, enabling complete solar spectrum utilization (200-800 nm) with a 2.5 eV bandgap. Enhanced UV-vis photocatalytic H2 evolution rate (HER) reached 2757 µmol g-1 h-1, 41.6 times higher than commercial TiO2 (66 µmol g-1 h-1). Strikingly, under visible light, HER rate was 189 µmol g-1 h-1. Experimental and simulated studies of mechanisms reveal that VO can serve as an electron reservoir of photo-generated charge carriers on N-doped active sites, and consequently, enhance the separation rate of exciton pairs. Moreover, the negative free energy (-0.35 V) indicates more favorable thermodynamics for HER as compared with bulk TiO2 (0.66 V). This research work paves a new way of developing efficient photocatalytic strategies of HER that are applicable in the sustainable carbon-zero energy supply.

2.
Phys Chem Chem Phys ; 24(25): 15389-15396, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704391

RESUMO

Photoreduction of CO2 into CO, CH4 or hydrocarbons is attractive, due to environmental compatibility and economic feasibility. Optimizing the reaction engineering of CO2 reduction is an effective and general strategy that should be given special consideration. In this article, the photocatalytic CO2 reduction performances are originally investigated in a low vacuum in both dilute (10%) and pure CO2. We discover that the CH4 yield increased above one hundred times as the vacuum degree increased from barometric pressure to -80 kPa in dilute CO2. It also reveals long-term stability and good cycling performance in a low vacuum. The enhanced CO2 photoreduction performance in a low vacuum comes from better accumulation of photogenerated electrons, less intense Brownian movement of gas molecules in the environment and hindrance of the active site-blocking of gas molecules in the environment. Improved photocatalytic CO2 reduction in a low vacuum is further verified by Pt-TiO2 catalysts. This research presents a general route for producing clean fuels by photocatalytic CO2 reduction in a more effective way.

3.
ACS Omega ; 7(17): 14797-14806, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557674

RESUMO

Fusion bonding for polymers has been successfully welded for the same and dissimilar materials. However, it is difficult to bond incompatible polymers due to poor interfacial adhesion. Usually, interfacial compatibilization can resolve this problem. According to the mechanism, an interlayer solder sheet (ISS) consisting of maleic anhydride-functionalized polypropylene (PP-g-MAH) and polyamide6 (PA6) was introduced into the ultrasonic welding (USW) device. In this way, it successfully realized the weldability between PP and PA6. The welding strength of PP-PA6 reached 22.3 MPa, about 84% welding strength for the PP body and 63% tensile strength for PP. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) showed the formation of PP-g-PA6 copolymer in blends. This copolymer played the role of an emulsifier, which enhanced the interfacial adhesion between PP and PA6 in two phases, leading to micron-scale homogeneity. In the USW process, the copolymer could act as a bridge between PP and PA6 molecular chains to realize the fusion bonding of incompatible polymers. Finally, we proposed the fusion bonding model for PP-PA6 interfaces.

4.
Sci Total Environ ; 723: 137757, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213398

RESUMO

A new composite material (Fe3O4@GAC, Fe3O4 nanoparticles loaded on a commercial granular activated carbon (GAC)) was prepared through a facile hydrothermal process at controlled Fe2+:Fe3+ molar ratios in air. Fe3O4@GAC was thoroughly characterized and tested for adsorption of perfluorooctanoic acid (PFOA) in water. Fe3O4@GAC(2:1), prepared at an Fe2+:Fe3+ molar ratio of 2:1, showed the best PFOA removal and offered 28.8% higher adsorption capacity than the parent GAC at final pH 4.0. The enhanced adsorption of PFOA was attributed to concurrent hydrophobic, electrostatic and complexation interactions between PFOA, GAC and Fe3O4. GAC in the composite played an important role for PFOA adsorption. The presence of Ca2+ ions (10 mM) at final pH 5.0-10.0 more than doubled the PFOA equilibrium uptake of PFOA by Fe3O4@GAC(2:1) due to the calcium bridging effect between PFOA and the Si-OH or Fe-OH groups in Fe3O4@GAC(2:1), and because of the Ca2+-modification induced formation of PFOA hemi-micelles on the surface or in the relatively large pores (2.27 nm) of Fe3O4@GAC(2:1). Fe3O4@GAC(2:1) was amenable to efficient regeneration using a mixture of NaOH solution and methanol. Fe3O4@GAC holds the potential to be used as a simple and low-cost adsorbent for enhanced adsorption of PFOA, especially in waters of high hardness and alkalinity.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31373326

RESUMO

Temporal variation of urban heat island (UHI) intensity is one of the most important themes in UHI studies. However, fine-scale temporal variability of UHI with explicit spatial information is sparse in the literature. Based on the hourly air temperature from 195 meteorological stations during August 2015 in Changchun, China, hourly spatiotemporal patterns of UHI were mapped to explore the temporal variability and the effects of land use on the thermal environment using time series analysis, air temperature profiling, and spatial analysis. The results showed that: (1) high air temperature does not indicate strong UHI intensity. The nighttime UHI intensity (1.51 °C) was much stronger than that in the daytime (0.49 °C). (2) The urban area was the hottest during most of the day except the period from late morning to around 13:00 when there was about a 40% possibility for an "inverse UHI intensity" to appear. Paddy land was the coolest in the daytime, while woodland had the lowest temperature during the nighttime. (3) The rural area had higher warming and cooling rates than the urban area after sunrise and sunset. It appeared that 23 °C was the threshold at which the thermal characteristics of different land use types changed significantly.


Assuntos
Clima , Temperatura Alta , Temperatura , China , Cidades , Estações do Ano , Neve , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA