Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38578851

RESUMO

A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relying on global constraints, the resulting methods face two main problems: First, most of the equation systems they formulate are of high degree and must be solved using computationally expensive polynomial solvers. Some methods use polynomial reduction strategies to simplify the system, but this adds some phantom solutions. In any event, an additional mechanism is employed to pick the best solution, which adds to the computation without any guarantees on the reliability of the solution. Second, these methods formulate constraints between a pair of images. Even if there is enough motion between them, they may suffer from local degeneracies that make the resulting estimates unreliable without any warning mechanism. %Unfortunately, these systems are of high degree with up to five real solutions. Hence, a computationally expensive strategy is required to select a unique solution. Furthermore, they suffer from degeneracies that make the resulting estimates unreliable, without any mechanism to identify this situation. In this paper, we solve these problems for isometric/conformal NRSfM. We show that, under widely applicable assumptions, we can derive a new system of equations in terms of the surface normals, whose two solutions can be obtained in closed-form and can easily be disambiguated locally. Our formalism also allows us to assess how reliable the estimated local normals are and to discard them if they are not. Our experiments show that our reconstructions, obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also being faster. %In this paper, we show that, under widely applicable assumptions, we can derive a new system of equations in terms of the surface normals, whose two solutions can be obtained in closed-form and can easily be disambiguated locally. Our formalism also allows us to assess how reliable the estimated local normals are and to discard them if they are not. Our experiments show that our reconstructions, obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also being faster.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38648137

RESUMO

Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field. In this work, we remove this limitation and introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields. Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples with respect to the underlying deep implicit field. We exploit this to define DeepMesh - an end-to-end differentiable mesh representation that can vary its topology. We validate our theoretical insight through several applications: Single view 3D Reconstruction via Differentiable Rendering, Physically-Driven Shape Optimization, Full Scene 3D Reconstruction from Scans and End-to-End Training. In all cases our end-to-end differentiable parameterization gives us an edge over state-of-the-art algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA