Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114002

RESUMO

The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.

2.
Nucleic Acids Res ; 51(W1): W331-W337, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167010

RESUMO

The mpox virus (MPXV) is mutating at an exceptional rate for a DNA virus and its global spread is concerning, making genomic surveillance a necessity. With MpoxRadar, we provide an interactive dashboard to track virus variants on mutation level worldwide. MpoxRadar allows users to select among different genomes as reference for comparison. The occurrence of mutation profiles based on the selected reference is indicated on an interactive world map that shows the respective geographic sampling site in customizable time ranges to easily follow the frequency or trend of defined mutations. Furthermore, the user can filter for specific mutations, genes, countries, genome types, and sequencing protocols and download the filtered data directly from MpoxRadar. On the server, we automatically download all MPXV genomes and metadata from the National Center for Biotechnology Information (NCBI) on a daily basis, align them to the different reference genomes, generate mutation profiles, which are stored and linked to the available metainformation in a database. This makes MpoxRadar a practical tool for the genomic survaillance of MPXV, supporting users with limited computational resources. MpoxRadar is open-source and freely accessible at https://MpoxRadar.net.


Assuntos
Genoma Viral , Genômica , Monkeypox virus , Software , Bases de Dados Factuais , Monkeypox virus/genética
3.
J Clin Microbiol ; 62(3): e0111123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407068

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Humanos , Idoso , Vírus Sincicial Respiratório Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento Completo do Genoma , Anticorpos Monoclonais
4.
PLoS Genet ; 17(6): e1009585, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061833

RESUMO

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Assuntos
Proteínas de Bactérias/metabolismo , Proteogenômica/métodos , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Simulação por Computador , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Peptídeo Hidrolases/metabolismo , Filogenia , Staphylococcus aureus/genética
5.
Proteomics ; 23(23-24): e2200421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37609810

RESUMO

Proteins with up to 100 amino acids have been largely overlooked due to the challenges associated with predicting and identifying them using traditional methods. Recent advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-seq technologies, and mass spectrometry (MS) have greatly facilitated the detection and characterisation of these elusive proteins in recent years. This has revealed their crucial role in various cellular processes including regulation, signalling and transport, as toxins and as folding helpers for protein complexes. Consequently, the systematic identification and characterisation of these proteins in bacteria have emerged as a prominent field of interest within the microbial research community. This review provides an overview of different strategies for predicting and identifying these proteins on a large scale, leveraging the power of these advanced technologies. Furthermore, the review offers insights into the future developments that may be expected in this field.


Assuntos
Biologia Computacional , Proteínas , Proteínas/metabolismo , Espectrometria de Massas/métodos , Biologia Computacional/métodos
6.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33147627

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional , SARS-CoV-2/isolamento & purificação , Pesquisa Biomédica , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
7.
Bioinformatics ; 38(17): 4223-4225, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35799354

RESUMO

SUMMARY: The ongoing pandemic caused by SARS-CoV-2 emphasizes the importance of genomic surveillance to understand the evolution of the virus, to monitor the viral population, and plan epidemiological responses. Detailed analysis, easy visualization and intuitive filtering of the latest viral sequences are powerful for this purpose. We present CovRadar, a tool for genomic surveillance of the SARS-CoV-2 Spike protein. CovRadar consists of an analytical pipeline and a web application that enable the analysis and visualization of hundreds of thousand sequences. First, CovRadar extracts the regions of interest using local alignment, then builds a multiple sequence alignment, infers variants and consensus and finally presents the results in an interactive app, making accessing and reporting simple, flexible and fast. AVAILABILITY AND IMPLEMENTATION: CovRadar is freely accessible at https://covradar.net, its open-source code is available at https://gitlab.com/dacs-hpi/covradar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genômica , Mutação
8.
PLoS Pathog ; 17(5): e1009604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048488

RESUMO

Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, often occupies environmental niches and infection sites characterized by limited concentrations of oxygen. Versatile genomic features enable this pathogen to maintain its physiology and virulence under hypoxia, but the crucial regulatory networks employed to switch from oxygen dependent respiration to alternative terminal electron acceptors (TEA) like nitrate, remains poorly understood. Here, we combined a Tn5 transposon mutagenesis screen and an anaerobic growth screen to identify a two-component signal transduction system with homology to RegAB. We show that RegAB is not only essential for anaerobic growth, but also for full virulence in cell lines and a mouse infection model. Further investigations of the RegAB regulon, using a global transcriptomic approach, identified 20 additional regulators under transcriptional control of RegAB, indicating a superordinate role of RegAB in the B. pseudomallei anaerobiosis regulatory network. Of the 20 identified regulators, NarX/L and a FNR homolog were selected for further analyses and a role in adaptation to anaerobic conditions was demonstrated. Growth experiments identified nitrate and intermediates of the denitrification process as the likely signal activateing RegAB, NarX/L, and probably of the downstream regulators Dnr or NsrR homologs. While deletions of individual genes involved in the denitrification process demonstrated their important role in anaerobic fitness, they showed no effect on virulence. This further highlights the central role of RegAB as the master regulator of anaerobic metabolism in B. pseudomallei and that the complete RegAB-mediated response is required to achieve full virulence. In summary, our analysis of the RegAB-dependent modulon and its interconnected regulons revealed a key role for RegAB of B. pseudomallei in the coordination of the response to hypoxic conditions and virulence, in the environment and the host.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Melioidose/microbiologia , Adaptação Fisiológica , Anaerobiose , Animais , Proteínas de Bactérias/genética , Burkholderia pseudomallei/patogenicidade , Burkholderia pseudomallei/fisiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Hipóxia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Nitratos/metabolismo , Oxirredução , Transcriptoma , Virulência
9.
Nucleic Acids Res ; 49(15): e89, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125903

RESUMO

Emerging evidence places small proteins (≤50 amino acids) more centrally in physiological processes. Yet, their functional identification and the systematic genome annotation of their cognate small open-reading frames (smORFs) remains challenging both experimentally and computationally. Ribosome profiling or Ribo-Seq (that is a deep sequencing of ribosome-protected fragments) enables detecting of actively translated open-reading frames (ORFs) and empirical annotation of coding sequences (CDSs) using the in-register translation pattern that is characteristic for genuinely translating ribosomes. Multiple identifiers of ORFs that use the 3-nt periodicity in Ribo-Seq data sets have been successful in eukaryotic smORF annotation. They have difficulties evaluating prokaryotic genomes due to the unique architecture (e.g. polycistronic messages, overlapping ORFs, leaderless translation, non-canonical initiation etc.). Here, we present a new algorithm, smORFer, which performs with high accuracy in prokaryotic organisms in detecting putative smORFs. The unique feature of smORFer is that it uses an integrated approach and considers structural features of the genetic sequence along with in-frame translation and uses Fourier transform to convert these parameters into a measurable score to faithfully select smORFs. The algorithm is executed in a modular way, and dependent on the data available for a particular organism, different modules can be selected for smORF search.


Assuntos
Genoma/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Algoritmos , Biologia Computacional , Eucariotos/genética , Anotação de Sequência Molecular , Células Procarióticas
10.
Clin Infect Dis ; 75(Suppl 1): S110-S120, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35749674

RESUMO

BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Genoma Viral , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , Vacinologia
11.
Euro Surveill ; 27(22)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35656831

RESUMO

German national surveillance data analysis shows that hospitalisation odds associated with Omicron lineage BA.1 or BA.2 infections are up to 80% lower than with Delta infection, primarily in ≥ 35-year-olds. Hospitalised vaccinated Omicron cases' proportions (2.3% for both lineages) seemed lower than those of the unvaccinated (4.4% for both lineages). Independent of vaccination status, the hospitalisation frequency among cases with Delta seemed nearly threefold higher (8.3%) than with Omicron (3.0% for both lineages), suggesting that Omicron inherently causes less severe disease.


Assuntos
COVID-19 , SARS-CoV-2 , Alemanha/epidemiologia , Humanos , SARS-CoV-2/genética , Índice de Gravidade de Doença
12.
J Environ Manage ; 318: 115629, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949087

RESUMO

Combined sewer overflows (CSOs) may represent a significant source of pollution, but they are difficult to quantify at a large scale (e.g. regional or national), due to a lack of accessible data. In the present study, we use a large scale, 6-parameter, lumped hydrological model to perform a screening level assessment of different CSO management scenarios for the European Union and United Kingdom, considering prevention and treatment strategies. For each scenario we quantify the potential reduction of CSO volumes and duration, and estimate costs and benefits. A comparison of scenarios shows that treating CSOs before discharge in the receiving water body (e.g. by constructed wetlands) is more cost-effective than preventing CSOs. Among prevention strategies, urban greening has a benefit/cost ratio one order of magnitude higher than grey solutions, due to the several additional benefits it entails. We also estimate that real time control may bring on average a CSO volume reduction of just above 20%. In general, the design of appropriate CSO management strategies requires consideration of context-specific conditions, and is best made in the context of an integrated urban water management plan taking into account factors such as other ongoing initiatives in urban greening, the possibility to disconnect impervious surfaces from combined drainage systems, and the availability of space for grey or nature-based solutions.


Assuntos
Hidrologia , Esgotos , Análise Custo-Benefício , Reino Unido
13.
Appl Microbiol Biotechnol ; 105(20): 7857-7869, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34554273

RESUMO

Alternative strategies to antibiotic treatment are required to inhibit pathogens, including Staphylococcus aureus. Bacteriocins, such as the lantibiotic bovicin HC5, have shown potential to control pathogens. This study aims to evaluate the stress response of S. aureus to bovicin HC5 using a proteomic approach. Sublethal concentrations of the bacteriocin repressed the synthesis of 62 cytoplasmic proteins, whereas 42 proteins were induced in S. aureus COL. Specifically, synthesis of several proteins involved in amino acid biosynthesis, mainly products of ilv-leu operon, and DNA metabolism, such as DNA polymerase I, decreased following bovicin treatment while proteins involved in catabolism, mainly tricarboxylic acid cycle metabolism, and chaperones were over-expressed. The levels of CodY and CcpA, important regulators involved in the stationary phase adaptation and catabolite repression, respectively, also increased in the presence of the bacteriocin. These results indicate that stress caused by the sublethal concentration of bovicin HC5 in the cell membrane results in growth reduction, reduced protein synthesis, and, at the same time, enhanced the levels of chaperones and enzymes involved in energy-efficient catabolism in an attempt to restore energy and cell homeostasis. These results bring relevant information to amplify the knowledge concerning the bacterial physiological changes in response to the stress caused by the cell exposition to bovicin HC5. New potential targets for controlling this pathogen can also be determined from the new protein expression pattern presented. KEY POINTS: • Bovicin HC5 changed the synthesis of cytoplasmic proteins of S. aureus. • Bovicin HC5 interfered in the synthesis of proteins of amino acids biosynthesis. • Synthesis of chaperones enhanced in the presence of sublethal dosage of bovicin HC5.


Assuntos
Bacteriocinas , Antibacterianos/farmacologia , Membrana Celular , Proteômica , Staphylococcus aureus
14.
J Environ Manage ; 287: 112298, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730673

RESUMO

Siltation has significant economic and social impacts as it directly reduces the useable amount of water in reservoirs. Giving a solution to the issue of sedimentation is a complicated task and maybe one of the most important engineering and environmental challenges of the 21st century. The deposited volume and the distribution pattern of the sediment are often unknown and not easy to assess. The sedimentation process is highly dynamic, initially due to the hydrological conditions of the incoming rivers, but also due to common internal phenomena like resuspension or density currents. Sediment remediation measures such as mechanical sediment removal or flushing are planned based on the sediment thickness distribution and the overall sediment volume/mass. Often, the sediment thickness is calculated through topographic differencing between the pre-impoundment reservoir lake bottom and the actual lake bottom. However, it is common that the previous depth distribution map is not available or in insufficient quality. In this regard, alternative measurement techniques have to be taken into consideration. In this study, we assessed the best possible approach depending on the characteristics of the sediment and of the reservoir. We combined three different acoustic systems (a multibeam, a sub-bottom profiler, and a single beam dual frequency system) with sediment coring and dynamic free fall penetrometer measurements for an improved assessment of sediment stock and sediment distribution in the Passaúna Reservoir. Our results showed that topographic differencing could not be applied, as the data for the pre-impoundment lake bottom was insufficiently accurate. The parametric sub-bottom profiler could detect the sediment thickness in high accuracy, but significant limitations were recorded in areas with high gas contents. The dual-frequency echosounder derived the sediment thickness with a normalized mean absolute error of 56% due to the high volumetric gas content in the sediment. The dynamic free-fall penetrometer showed satisfying results compared to the other systems. The normalized mean absolute error was 22%, and sediment thickness could be detected in areas with up to 1.8 m of sediment. Sediment coring is also a reliable technique for sediment thickness determination. However, the results showed that if only traditional coring devices are used (gravity corer), the limited penetration depth of the equipment combined with sampling disturbances often prevent a correct assessment of the sediment thickness. The overall results of this study can help for an improved decision-making regarding reservoir management. The accurate assessment of sediment volume and distribution can reduce costs for sediment removal and assist in having a precise overview of the reservoir lifetime.


Assuntos
Sedimentos Geológicos , Rios , Hidrologia , Lagos
15.
Water Sci Technol ; 83(5): 1055-1071, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724936

RESUMO

Emissions of organic compounds, heavy metals and chemicals used in the ceramic industry cause significant organic and inorganic pollution of water. The effluent must be treated before it is discharged into a water body. International and EU laws control the chemical oxygen demand (COD) of the wastewater. Conventional technologies, such as sedimentation, flocculation and biological treatment, have lots of drawbacks, whereas membrane technologies give many benefits, as they are chemical-free and allow a reduction of the treatment steps. One-step wastewater nanofiltration with ceramic membranes of 450 Da cut-off is able to reduce the COD of ceramic wastewater to a sufficient level. However, the working time without cleaning is limited and the rejection of membranes can be significantly reduced due to fouling. Multistage filtration can be the solution. Filtration experiments with various combinations (MF, UF and NF) of ceramic membranes were performed at a laboratory scale with single-channel membranes and at pilot scale with 7-, 19- and 151-channel membranes in order to permanently reach the limit value of a COD below 80 mg/L and to increase the operating time. Four types of membranes were sequentially tested in the cross-flow mode: MF (200 nm pore size), UF (2,000 Da), NF (450 Da) and NF (200 Da). 5-day Biological Oxygen Demand (BOD) tests were performed in order to examine the wastewater biodegradability. The test results with single-channel membranes showed that in terms of the highest COD rejection and the highest permeability, the best combination was that of MF and UF membranes. Here, UF membranes were sufficient to reach the limit values. As for the multi-channel membranes, the combination of MF and NF (450 Da) was the best and the final COD concentration ranged from 11 to 48 mg/L. 5-day BOD bottle tests showed a COD/BOD ratio of 3.8, which opened up possibilities for combined treatment.


Assuntos
Águas Residuárias , Purificação da Água , Cerâmica , Membranas Artificiais , Eliminação de Resíduos Líquidos
16.
Mol Microbiol ; 111(4): 1009-1024, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30648305

RESUMO

Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multidrug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild-type cells were not known. Using RNA-Seq and promoter-lacZ fusions, we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Depsipeptídeos/farmacologia , Farmacorresistência Bacteriana/genética , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30885899

RESUMO

The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Fatores de Virulência/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Biofilmes/efeitos dos fármacos , Galinhas/microbiologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Genômica/métodos , Humanos , Tipagem de Sequências Multilocus/métodos , Plasmídeos/genética , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Sequenciamento Completo do Genoma/métodos , beta-Lactamases/genética
18.
J Clin Microbiol ; 57(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651394

RESUMO

Among enterococci, Enterococcus faecalis occurs ubiquitously, with the highest incidence of human and animal infections. The high genetic plasticity of E. faecalis complicates both molecular investigations and phylogenetic analyses. Whole-genome sequencing (WGS) enables unraveling of epidemiological linkages and putative transmission events between humans, animals, and food. Core genome multilocus sequence typing (cgMLST) aims to combine the discriminatory power of classical multilocus sequence typing (MLST) with the extensive genetic data obtained by WGS. By sequencing a representative collection of 146 E. faecalis strains isolated from hospital outbreaks, food, animals, and colonization of healthy human individuals, we established a novel cgMLST scheme with 1,972 gene targets within the Ridom SeqSphere+ software. To test the E. faecalis cgMLST scheme and assess the typing performance, different collections comprising environmental and bacteremia isolates, as well as all publicly available genome sequences from the NCBI and SRA databases, were analyzed. In more than 98.6% of the tested genomes, >95% good cgMLST target genes were detected (mean, 99.2% target genes). Our genotyping results not only corroborate the known epidemiological background of the isolates but exceed previous typing resolution. In conclusion, we have created a powerful typing scheme, hence providing an international standardized nomenclature that is suitable for surveillance approaches in various sectors, linking public health, veterinary public health, and food safety in a true One Health fashion.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Enterococcus faecalis/genética , Genoma Bacteriano/genética , Animais , Proteínas de Bactérias/genética , Enterococcus faecalis/classificação , Enterococcus faecalis/isolamento & purificação , Microbiologia Ambiental , Genótipo , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Saúde Única , Filogenia , Polimorfismo de Nucleotídeo Único
20.
Expert Rev Proteomics ; 16(5): 375-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002542

RESUMO

INTRODUCTION: The study of microbial communities based on the combined analysis of genomic and proteomic data - called metaproteogenomics - has gained increased research attention in recent years. This relatively young field aims to elucidate the functional and taxonomic interplay of proteins in microbiomes and its implications on human health and the environment. Areas covered: This article reviews bioinformatics methods and software tools dedicated to the analysis of data from metaproteomics and metaproteogenomics experiments. In particular, it focuses on the creation of tailored protein sequence databases, on the optimal use of database search algorithms including methods of error rate estimation, and finally on taxonomic and functional annotation of peptide and protein identifications. Expert opinion: Recently, various promising strategies and software tools have been proposed for handling typical data analysis issues in metaproteomics. However, severe challenges remain that are highlighted and discussed in this article; these include: (i) robust false-positive assessment of peptide and protein identifications, (ii) complex protein inference against a background of highly redundant data, (iii) taxonomic and functional post-processing of identification data, and finally, (iv) the assessment and provision of metrics and tools for quantitative analysis.


Assuntos
Análise de Dados , Metagenômica , Proteômica , Bases de Dados de Proteínas , Humanos , Proteoma/metabolismo , Ferramenta de Busca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA