Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Xenotransplantation ; 21(3): 254-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24635144

RESUMO

BACKGROUND: B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance. METHODS: The anti-idiotypic antibody, B4N190, was selected from a synthetic human phage display library after enrichment against a recombinant anti-non-Gal xenoantibody followed by functional testing in vitro. The inhibitory small molecule, JMS022, was selected from the NCI diversity set III using virtual screening based on predicted xenoantibody structure. Three rhesus monkeys were pre-treated with anti-non-Gal-specific single-chain anti-idiotypic antibody, B4N190. A total of five monkeys, including two untreated controls, were then immunized with GTKO porcine endothelial cells to initiate an anti-non-α-1,3-Gal (non-Gal) xenoantibody response. The efficacy of the inhibitory small molecule specific for anti-non-Gal xenoantibody, JMS022, was tested in vitro. RESULTS: After the combination of in vivo anti-id and in vitro small molecule treatments, IgM xenoantibody binding to GTKO cells was reduced to pre-immunization levels in two-thirds of animals; however, some xenoantibodies remained in the third animal. Furthermore, when treated with anti-id alone, all three experimental animals displayed a lower anti-non-Gal IgG xenoantibody response compared with controls. Treatment with anti-idiotypic antibody alone reduced IgM xenoantibody response intensity in only one of three monkeys injected with GTKO pig endothelial cells. In the one experimental animal, which displayed reduced IgM and IgG responses, select B-cell subsets were also reduced by anti-id therapy alone. Furthermore, natural antibody responses, including anti-laminin, anti-ssDNA, and anti-thyroglobulin antibodies were intact despite targeted depletion of anti-non-Gal xenoantibodies in vivo indicating that selective reduction of xenoantibodies can be accomplished without total B-cell depletion. CONCLUSIONS: This preliminary study demonstrates the strength of approaches designed to selectively inhibit anti-non-Gal xenoantibody. Both anti-non-Gal-specific anti-idiotypic antibody and small molecules can be used to selectively limit xenoantibody responses.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Heterófilos/imunologia , Rejeição de Enxerto/prevenção & controle , Imunoglobulina M/imunologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Anticorpos Anti-Idiotípicos/metabolismo , Anticorpos Heterófilos/metabolismo , Linfócitos B/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Marcadores Genéticos , Rejeição de Enxerto/imunologia , Imunoglobulina M/metabolismo , Macaca mulatta , Suínos/genética
2.
Am J Stem Cells ; 7(1): 1-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531855

RESUMO

The use of cardiovascular progenitor cells (CPCs) to repair damaged myocardium has been the focus of intense research. Previous reports have shown that pretreatments, including hypoxia, improve cell function. However, the age-dependent effects of short-term hypoxia on CPCs, and the role of signaling in these effects, are unknown. Cloned neonatal and adult CPCs expressing Isl1, c-Kit, KDR, PDGFRA, and CXCR4, were preconditioned using hypoxia (1% O2 for six hours). Intracellular signaling pathway changes were modeled using Ingenuity Pathway Analysis (IPA), while qRT-PCR, flow cytometry, and immunoblotting were used to measure pathway activation. Cellular function, including survival, cell cycle, and invasion, were evaluated using a TUNEL assay, flow cytometry, and a Transwell® invasion assay, respectively. IPA predicted, and RT-PCR and flow cytometry confirmed, that the PI3K/AKT pathway was activated following short-term hypoxia. Heat shock protein (HSP) 40 expression increased significantly in both age groups, while HSP70 expression increased only in neonatal CPCs. Neonatal CPC invasion and survival improved after hypoxia pre-treatment, while no effect was observed in cell cycling and developmental status. Prostaglandin receptor expression was enhanced in neonatal cells. Prior to transplantation, hypoxic preconditioning enhances CPC function, including invasion ability and pro-survival pathway activation.

3.
Transplant Direct ; 3(5): e153, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573188

RESUMO

BACKGROUND: Cardiovascular progenitor cells (CPCs) have been cultured on various scaffolds to resolve the challenge of cell retention after transplantation and to improve functional outcome after cell-based cardiac therapy. Previous studies have reported successful culture of fully differentiated cardiomyocytes on scaffolds of various types, and ongoing efforts are focused on optimizing the mix of cardiomyocytes and endothelial cells as well as on the identification of a source of progenitors capable of reversing cardiovascular damage. A scaffold culture that fosters cell differentiation into cardiomyocytes and endothelial cells while maintaining a progenitor reserve would benefit allogeneic cell transplantation. METHODS: Isl-1 + c-Kit + CPCs were isolated as clonal populations from human and sheep heart tissue. After hyper-crosslinked carbohydrate polymer scaffold culture, cells were assessed for differentiation, intracellular signaling, cell cycling, and growth factor/chemokine expression using real time polymerase chain reaction, flow cytometry, immunohistochemistry, and calcium staining. RESULTS: Insulin-like growth factor 1, hepatocyte growth factor, and stromal cell derived factor 1α paracrine factors were induced, protein kinase B signaling was activated, extracellular signal-regulated kinase phosphorylation was reduced and differentiation into both cardiomyocytes and endothelial cells was induced by scaffold-based cell culture. Interestingly, movement of CPCs out of the G1 phase of the cell cycle and increased expression of pluripotency genes PLOU5F1 (Oct4) and T (Brachyury) within a portion of the cultured population occurred, which suggests the maintenance of a progenitor population. Two-color immunostaining and 3-color fluorescence-activated cell sorting analysis confirmed the presence of both Isl-1 expressing undifferentiated cells and differentiated cells identified by troponin T and von Willebrand factor expression. Ki-67 labeling verified the presence of proliferating cells that remained in situ alongside the differentiated functional derivatives. CONCLUSIONS: Cloned Isl-1 + c-kit + CPCs maintained on a hyper-cross linked polymer scaffold retain dual potential for proliferation and differentiation, providing a scaffold-based stem cell source for transplantation of committed and proliferating cardiovascular progenitors for functional testing in preclinical models of cell-based repair.

4.
PLoS One ; 10(7): e0132378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161778

RESUMO

Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05). Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation). These microRNAs were unchanged in adult cardiac progenitors. The effect of exposure to simulated microgravity in cardiovascular progenitors is age-dependent. Adult cardiac progenitors showed elevated expression of markers for endothelial and cardiomyogenic differentiation whereas neonatal progenitors acquired characteristics of dedifferentiating cells.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular , Separação Celular/métodos , Miocárdio/citologia , Células-Tronco/citologia , Simulação de Ausência de Peso , Idoso , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Reparo do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
5.
PLoS One ; 8(10): e77464, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204836

RESUMO

Although clinical benefit can be achieved after cardiac transplantation of adult c-kit+ or cardiosphere-derived cells for myocardial repair, these stem cells lack the regenerative capacity unique to neonatal cardiovascular stem cells. Unraveling the molecular basis for this age-related discrepancy in function could potentially transform cardiovascular stem cell transplantation. In this report, clonal populations of human neonatal and adult cardiovascular progenitor cells were isolated and characterized, revealing the existence of a novel subpopulation of endogenous cardiovascular stem cells that persist throughout life and co-express both c-kit and isl1. Epigenetic profiling identified 41 microRNAs whose expression was significantly altered with age in phenotypically-matched clones. These differences were correlated with reduced proliferation and a limited capacity to invade in response to growth factor stimulation, despite high levels of growth factor receptor on progenitors isolated from adults. Further understanding of these differences may provide novel therapeutic targets to enhance cardiovascular regenerative capacity.


Assuntos
Células-Tronco Adultas/citologia , Epigênese Genética , MicroRNAs/genética , Miócitos Cardíacos/citologia , Regeneração/genética , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Fatores Etários , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA