Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2210632120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669117

RESUMO

Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Divisão Celular/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Vet Res ; 15(1): 108, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961581

RESUMO

BACKGROUND: This study aimed to examine the prevalence, serovars, and antimicrobial resistance of Salmonella isolates from broiler chickens in Kagoshima, Japan. A total of 192 flocks and 3071 samples were collected from broiler chickens at local farms in Kagoshima, Japan from 2009 to 2012. RESULT: Among the tested farms, 49.0% of flocks were positive for Salmonella, and 243 isolates were obtained from 3071 cecal samples (7.9%). All the Salmonella isolates were one of three serovars: S. Infantis (57.6%); (140/243), S. Manhattan (40.3%; 98/243 and S. Schwarzengrund (2.1%; 5/243). The proportion of S. Infantis isolates decreased from 66.0% in 2009 to 50.0% in 2011 but increased to 57.6% in 2012, while the proportion of S. Manhattan isolates significantly increased from 26.4 to 50% from 2009 to 2011, and decreased moderately to 40.9% in 2012. Most of the recovered Salmonella isolates were resistant to three antimicrobials, i.e., streptomycin (95.1%), sulfamethoxazole (91.0%) and oxytetracycline (91.4%). In contrast, all Salmonella strains were susceptible to chloramphenicol. Comparison of this study to previous studies of the antimicrobial susceptibility of Salmonella isolates showed that: the percentage of antibiotic-resistance isolates increased dramatically for two antibiotics, ampicillin (from 22.4 to 55.1%) and cefotaxime (from 9.1 to 52.7%). In contrast, the percentage of ofloxacin-resistant isolates decreased across the three survey periods, from 20.8% in 2004-2006 to 1.6% in the present study period (2009-2012). In addition, S. Infantis exhibited a variety of resistance to antimicrobials examined from sensitive to resistance to eight antimicrobials. Multidrug resistance to more than 6 six antimicrobials was detected in 113 (46.5%) of the isolates, and most of them were S. Manhattan. CONCLUSIONS: There was a marked change in the serovars and antimicrobial resistance profiles of the Salmonella isolates in this study compared to those in previous studies. The percentage of S. Manhattan isolates increased as did the percentages of ampicillin- and cefotaxime-resistant isolates.


Assuntos
Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/epidemiologia , Salmonella/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Japão/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/epidemiologia , Prevalência , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Sorogrupo
3.
J Exp Bot ; 67(14): 4391-402, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255930

RESUMO

We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance.


Assuntos
Ácido Ascórbico/fisiologia , Brassica rapa/fisiologia , Resistência à Doença/fisiologia , Potyvirus/patogenicidade , Arabidopsis/fisiologia , Ácido Ascórbico/metabolismo , Brassica rapa/genética , Brassica rapa/virologia , Resistência à Doença/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia
4.
Chemistry ; 20(5): 1223-5, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24375721

RESUMO

Charge transfer through DNA is of great interest because of the potential of DNA to be a building block for nanoelectronic sensors and devices. The photochemical reaction of 5-halouracil has been used for probing charge-transfer processes along DNA. We previously reported on unique charge transfer following photochemical reaction of 5-bromouracil within four-base π-stacks in Z-DNA. In this study, we incorporated a guanosine instead of a deoxyguanosine into Z-DNA, and found that electron transfer occurs in a different mechanism through four-base π-stacks.


Assuntos
Carboidratos/química , DNA Forma Z/química , Desoxiguanosina/química , Ribonucleotídeos/química , Bromouracila/química , Transporte de Elétrons , Elétrons , Teoria Quântica , Raios Ultravioleta
5.
Dis Model Mech ; 15(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897389

RESUMO

Cleft palate is one of the major congenital craniofacial birth defects. The etiology underlying the pathogenesis of cleft palate has yet to be fully elucidated. Dissociation of the medial edge epithelium (MEE) at the contacting region of palatal shelves and subsequent migration or apoptosis of MEE cells is required for proper MEE removal. Ras-responsive element-binding protein 1 (RREB1), a RAS transcriptional effector, has recently been shown to play a crucial role in developmental epithelial-mesenchymal transition (EMT), in which loss of epithelial characteristics is an initial step, during mid-gastrulation of embryonic development. Interestingly, the involvement of RREB1 in cleft palate has been indicated in humans. Here, we demonstrated that pan-Ras inhibitor prevents the dissociation of MEE during murine palatal fusion. Rreb1 is expressed in the palatal epithelium during palatal fusion, and knockdown of Rreb1 in palatal organ culture resulted in palatal fusion defects by inhibiting the dissociation of MEE cells. Our present findings provide evidence that RREB1-mediated Ras signaling is required during palatal fusion. Aberrant RREB1-mediated Ras signaling might be involved in the pathogenesis of cleft palate.


Assuntos
Fissura Palatina , Palato , Animais , Fissura Palatina/genética , Fissura Palatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Feminino , Camundongos , Gravidez , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
Arch Virol ; 156(9): 1575-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21625976

RESUMO

In the pathosystem of Brassica rapa and turnip mosaic virus (TuMV), the type of symptoms expressed by susceptible plants are determined by the gene combinations between the host cultivar and virus strain. In this study, we found that the resistance reaction and symptoms such as systemic lethal necrosis, leaf malformation and mosaic were differentially determined, depending on the combinations of the genotypes for a host locus or two closely linked host loci and the viral CI gene. Systemic necrosis caused by TuMV-UK1 on some B. rapa subsp. pekinensis cultivars is induced in conjunction with a recessive gene, rnt1-2 (resistance and necrosis to tumv 1-2), which is allelic or closely linked to TuMV resistance gene Rnt1-1 on chromosome R6. rnt1-2 is incompletely recessive to rnt1-3, which does not cause any necrotic responses. The genotype rnt1-2/rnt1-3 caused a mild necrosis along leaf veins of severely malformed leaves. A spontaneous mutant, TuMV-UK1 (UK1m), with the amino acid substitution V1827E in CI, broke Rnt1-1 resistance and altered the systemic necrosis and leaf malformation induced by rnt1-2. This single amino acid in the CI protein of UK1 was also associated with severe mosaic and abnormal leaf development, perhaps interacting with unknown host factors. To clarify the relationship between Rnt1-1 and TuRB01b, which was previously reported as a TuMV-UK1 resistance gene on chromosome R6, the B. rapa cultivar Tropical Delight carrying TuRB01b was inoculated with UK1m or the infectious UK1 clone with the CI V1827E mutation. Because Tropical Delight showed resistance to both mutants, Rnt1-1 might be different from TuRB01b.


Assuntos
Brassica rapa/virologia , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Vírus do Mosaico/genética , Doenças das Plantas/virologia , Genes de Plantas , Ligação Genética , Doenças das Plantas/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
PLoS One ; 12(2): e0173073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28245277

RESUMO

Recent development of environmental DNA (eDNA) analysis allows us to survey underwater macro-organisms easily and cost effectively; however, there have been no reports on eDNA detection or quantification for jellyfish. Here we present the first report on an eDNA analysis of marine jellyfish using Japanese sea nettle (Chrysaora pacifica) as a model species by combining a tank experiment with spatial and temporal distribution surveys. We performed a tank experiment monitoring eDNA concentrations over a range of time intervals after the introduction of jellyfish, and quantified the eDNA concentrations by quantitative real-time PCR. The eDNA concentrations peaked twice, at 1 and 8 h after the beginning of the experiment, and became stable within 48 h. The estimated release rates of the eDNA in jellyfish were higher than the rates previously reported in fishes. A spatial survey was conducted in June 2014 in Maizuru Bay, Kyoto, in which eDNA was collected from surface water and sea floor water samples at 47 sites while jellyfish near surface water were counted on board by eye. The distribution of eDNA in the bay corresponded with the distribution of jellyfish inferred by visual observation, and the eDNA concentration in the bay was ~13 times higher on the sea floor than on the surface. The temporal survey was conducted from March to November 2014, in which jellyfish were counted by eye every morning while eDNA was collected from surface and sea floor water at three sampling points along a pier once a month. The temporal fluctuation pattern of the eDNA concentrations and the numbers of observed individuals were well correlated. We conclude that an eDNA approach is applicable for jellyfish species in the ocean.


Assuntos
DNA/análise , Peixes/genética , Animais , Ecossistema , Monitoramento Ambiental , Peixes/fisiologia , Modelos Teóricos , Reação em Cadeia da Polimerase em Tempo Real
8.
PLoS One ; 11(6): e0156217, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304876

RESUMO

The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.


Assuntos
Organismos Aquáticos/metabolismo , Biomassa , DNA/análise , Meio Ambiente , Hydrocharitaceae/metabolismo , Aquicultura/métodos , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , DNA/genética , DNA de Plantas/análise , DNA de Plantas/genética , Ecossistema , Geografia , Hydrocharitaceae/genética , Hydrocharitaceae/crescimento & desenvolvimento , Japão , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase/métodos , Lagoas , Reprodutibilidade dos Testes
9.
Phytochemistry ; 122: 139-145, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678322

RESUMO

Cancer stem cells (CSCs) constitute a small population of undifferentiated cells within a tumor that have the ability to self-renew and drive tumor formation, thus behaving as cancer-initiating cancer cells. Therapeutic interventions that eliminate CSCs are necessary to completely cure patients, since CSCs are a crucial source of tumor recurrence and metastasis. An induced CSC-like (iCSCL) model was recently established using induced pluripotent stem cells (iPSCs). In this study, a natural product-eucommicin A-was identified from Eucommia ulmoides leaves by screening for anti-CSC activity using the iCSCL model. Its structure was elucidated by spectroscopic methods as a quinic acid diester of 3,4,3',4'-tetrahydroxy-ß-truxinic acid. Eucommicin A exhibited selective anti-CSC activity and inhibited tumor sphere formation by iCSCL cells. The results of this study suggest that eucommicin A could serve as a lead compound in the development of drugs to abrogate the stemness and self-renewal ability of CSCs.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Eucommiaceae/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Humanos , Lignanas/química , Estrutura Molecular
10.
PLoS One ; 11(3): e0149786, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26933889

RESUMO

Recent studies in streams and ponds have demonstrated that the distribution and biomass of aquatic organisms can be estimated by detection and quantification of environmental DNA (eDNA). In more open systems such as seas, it is not evident whether eDNA can represent the distribution and biomass of aquatic organisms because various environmental factors (e.g., water flow) are expected to affect eDNA distribution and concentration. To test the relationships between the distribution of fish and eDNA, we conducted a grid survey in Maizuru Bay, Sea of Japan, and sampled surface and bottom waters while monitoring biomass of the Japanese jack mackerel (Trachurus japonicus) using echo sounder technology. A linear model showed a high R(2) value (0.665) without outlier data points, and the association between estimated eDNA concentrations from the surface water samples and echo intensity was significantly positive, suggesting that the estimated spatial variation in eDNA concentration can reflect the local biomass of the jack mackerel. We also found that a best-fit model included echo intensity obtained within 10-150 m from water sampling sites, indicating that the estimated eDNA concentration most likely reflects fish biomass within 150 m in the bay. Although eDNA from a wholesale fish market partially affected eDNA concentration, we conclude that eDNA generally provides a 'snapshot' of fish distribution and biomass in a large area. Further studies in which dynamics of eDNA under field conditions (e.g., patterns of release, degradation, and diffusion of eDNA) are taken into account will provide a better estimate of fish distribution and biomass based on eDNA.


Assuntos
DNA/genética , Perciformes/genética , Animais , Baías , Biomassa , Ecossistema , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA