Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 382: 337-44, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26231414

RESUMO

Experimental studies showed that light qualities such as color and strength influence the phase response properties of plant circadian systems. These effects, however, have yet to be properly addressed in theoretical models of plant circadian systems. To fill this gap, the present paper develops a mathematical model of a plant circadian clock that takes into account the intensity and wavelength of the input light. Based on experimental knowledge, we model three photoreceptors, Phytochrome A, Phytochrome B, and Cryptochrome 1, which respond to red and/or blue light, in Arabidopsis thaliana. The three photoreceptors are incorporated into a standard mathematical model of the plant system, in which activator and repressor genes form a single feedback loop. The model capability is examined by a phase response curve (PRC), which plots the phase shifts elicited by the light perturbation as a function of the perturbation phase. Numerical experiments demonstrate that the extended model reproduces the essential features of the PRCs measured experimentally under various light conditions. Particularly, unlike conventional models, the model generates the inherent shape of the PRC under dark pulse stimuli. The outcome of our modeling approach may motivate future theoretical and experimental studies of plant circadian rhythms.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Modelos Biológicos , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Fotorreceptores de Plantas/metabolismo
2.
Biochem Biophys Res Commun ; 443(3): 852-7, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24342614

RESUMO

Obesity is highly associated with colon cancer development. Whereas it is generally attributed to pro-tumorigenic effects of high fat diet (HFD), we here show that a common genetic basis for predisposition to obesity and colon cancer might also underlie the close association. Comparison across multiple rat strains revealed that strains prone to colon tumorigenesis initiated by a dietary carcinogen amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) tended to develop obesity. Through transcriptome and extensive immunoblotting analyses, we identified the basal level of activated AKT in colonic crypts as a biomarker for the common predisposition. Notably, PhIP induced activation of AKT, which could persist for several weeks under a low fat diet (LFD), but not under HFD. On the other hand, PhIP and HFD independently induced Wnt pathway activation and inhibited apoptosis, through distinct mechanisms involving GSK-3ß, caspase 3 and poly-ADP ribose polymerase (PARP). Taken together, these observations provide mechanistic insights into how PhIP-induced activation of AKT might cooperate with HFD at multiple levels toward development of colon cancer.


Assuntos
Carcinogênese/patologia , Carcinógenos/toxicidade , Neoplasias do Colo/enzimologia , Dieta , Imidazóis/toxicidade , Obesidade/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Focos de Criptas Aberrantes/metabolismo , Focos de Criptas Aberrantes/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Colo/efeitos dos fármacos , Colo/enzimologia , Colo/patologia , Neoplasias do Colo/patologia , Dieta Hiperlipídica , Suscetibilidade a Doenças/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Via de Sinalização Wnt/efeitos dos fármacos
3.
Int J Mol Sci ; 13(5): 6492-6506, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754379

RESUMO

Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.


Assuntos
Transformação Celular Neoplásica/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Histonas/metabolismo , Neoplasias/genética , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p53/genética , Animais , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Tetraploidia
4.
Front Plant Sci ; 13: 994555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589103

RESUMO

The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recent study demonstrated that the effect of time lags between light and temperature cycles on plant growth could be predicted by the entrainment properties of the circadian clock in Arabidopsis thaliana. Based on this prediction, it was possible to control plant growth by adjusting the time lag. However, for application in plant factories, it is necessary to verify the effectiveness of this method using commercial vegetables, such as leaf lettuce. In this study, we investigated the entrainment properties of the circadian clock and the effect of the time lag between light and temperature cycles on circadian rhythms and plant growth in Lactuca sativa L. seedlings. For evaluation of circadian rhythms, we used transgenic L. sativa L. with a luciferase reporter in the experiment and a phase oscillator model in the simulation. We found that the entrainment properties for the light and temperature stimuli and the effects of time lags on circadian rhythm and growth were similar to those of A. thaliana. Moreover, we demonstrated that changes in growth under different time lags could be predicted by simulation based on the entrainment properties of the circadian clock. These results showed the importance of designing a cultivation environment that considers the circadian clock and demonstrated a series of methods to achieve this.

5.
Plant Mol Biol ; 76(3-5): 335-44, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21290168

RESUMO

The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.


Assuntos
Cloroplastos/metabolismo , Lactuca/metabolismo , Tiorredoxinas/biossíntese , Sequência de Bases , Primers do DNA , Humanos , Plastídeos , Reação em Cadeia da Polimerase
6.
Nucleic Acids Res ; 37(9): 2841-53, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19282454

RESUMO

The promoter of the human KRAS proto-oncogene contains a structurally polymorphic nuclease hypersensitive element (NHE) whose purine strand forms a parallel G-quadruplex structure (called 32R). In a previous work we reported that quadruplex 32R is recognized by three nuclear proteins: PARP-1, Ku70 and hnRNP A1. In this study we describe the interaction of recombinant hnRNP A1 (A1) and its derivative Up1 with the KRAS G-quadruplex. Mobility-shift experiments show that A1/Up1 binds specifically, and also with a high affinity, to quadruplex 32R, while CD demonstrates that the proteins strongly reduce the intensity of the 260 nm-ellipticity-the hallmark for parallel G4-DNA-and unfold the G-quadruplex. Fluorescence resonance energy transfer melting experiments reveal that A1/Up1 completely abrogates the cooperative quadruplex-to-ssDNA transition that characterizes the KRAS quadruplex and facilitates the association between quadruplex 32R and its complementary polypyrimidine strand. When quadruplex 32R is stabilized by TMPyP4, A1/Up1 brings about only a partial destabilization of the G4-DNA structure. The possible role played by hnRNP A1 in the mechanism of KRAS transcription is discussed.


Assuntos
Quadruplex G , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Sítios de Ligação , Dicroísmo Circular , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Desnaturação de Ácido Nucleico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras) , Transcrição Gênica
7.
J Biol Rhythms ; 36(5): 432-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313451

RESUMO

Phase response curves (PRCs) play important roles in the entrainment of periodic environmental cycles. Measuring the PRC is necessary to elucidate the relationship between environmental cues and the circadian clock. Conversely, the PRCs of plant circadian clocks are unstable due to multiple factors such as biotic/abiotic noise, individual differences, changes in amplitude, growth stage, and organ/tissue specificity. However, evaluating the effect of each factor is important because PRCs are commonly obtained by determining the response of many individuals, which include different amplitude states and organs. The plant root circadian clock spontaneously generates a spatiotemporal pattern called a stripe pattern, whereby all phases of the circadian rhythm exist within an individual root. Therefore, stimulating a plant root expressing this pattern enables phase responses at all phases to be measured using an individual root. In this study, we measured PRCs for thermal stimuli using this spatiotemporal pattern method and found that the PRC changed asymmetrically with positive and negative temperature stimuli. Individual differences were observed for weak but not for strong temperature stimuli. The root PRC changed depending on the amplitude of the circadian rhythm. The PRC in the young root near the hypocotyl was more sensitive than those in older roots or near the tip. Simulation with a phase oscillator model revealed the effect of measurement and internal noises on the PRC. These results indicate that instability in the entrainment of the plant circadian clock involves multiple factors, each having different characteristics. These results may help us understand how plant circadian clocks adapt to unstable environments and how plant circadian clocks with different characteristics, such as organ, age, and amplitude, are integrated within individuals.


Assuntos
Relógios Circadianos , Idoso , Ritmo Circadiano , Humanos , Especificidade de Órgãos , Raízes de Plantas , Temperatura
8.
Nat Commun ; 12(1): 864, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558539

RESUMO

Circadian clocks allow organisms to synchronize their physiological processes to diurnal variations. A phase response curve allows researchers to understand clock entrainment by revealing how signals adjust clock genes differently according to the phase in which they are applied. Comprehensively investigating these curves is difficult, however, because of the cost of measuring them experimentally. Here we demonstrate that fundamental properties of the curve are recoverable from the singularity response, which is easily measured by applying a single stimulus to a cellular network in a desynchronized state (i.e. singularity). We show that the singularity response of Arabidopsis to light/dark and temperature stimuli depends on the properties of the phase response curve for these stimuli. The measured singularity responses not only allow the curves to be precisely reconstructed but also reveal organ-specific properties of the plant circadian clock. The method is not only simple and accurate, but also general and applicable to other coupled oscillator systems as long as the oscillators can be desynchronized. This simplified method may allow the entrainment properties of the circadian clock of both plants and other species in nature.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Arabidopsis/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Luz , Especificidade de Órgãos/efeitos da radiação , Temperatura
9.
J Biol Chem ; 284(38): 25585-92, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19628463

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most abundant heterocyclic amine in cooked foods, and is both mutagenic and carcinogenic. It has been suspected that the carcinogenicity of PhIP is derived from its ability to form DNA adducts, principally dG-C8-PhIP. To shed further light on the molecular mechanisms underlying the induction of mutations by PhIP, in vitro DNA synthesis analyses were carried out using a dG-C8-PhIP-modified oligonucleotide template. In this template, the dG-C8-PhIP adduct was introduced into the second G of the TCC GGG AAC sequence located in the 5' region. This represents one of the mutation hot spots in the rat Apc gene that is targeted by PhIP. Guanine deletions at this site in the Apc gene have been found to be preferentially induced by PhIP in rat colon tumors. DNA synthesis with A- or B-family DNA polymerases, such as Escherichia coli polymerase (pol) I and human pol delta, was completely blocked at the adducted guanine base. Translesional synthesis polymerases of the Y-family, pol eta, pol iota, pol kappa, and REV1, were also used for in vitro DNA synthesis analyses with the same templates. REV1, pol eta, and pol kappa were able to insert dCTP opposite dG-C8-PhIP, although the efficiencies for pol eta and pol kappa were low. pol kappa was also able to catalyze the extension reaction from the dC opposite dG-C8-PhIP, during which it often skipped over one dG of the triple dG sequence on the template. This slippage probably leads to the single dG base deletion in colon tumors.


Assuntos
Neoplasias do Colo/metabolismo , Adutos de DNA/metabolismo , DNA de Neoplasias/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Genes APC , Imidazóis/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Neoplasias do Colo/química , Neoplasias do Colo/genética , Adutos de DNA/química , Adutos de DNA/genética , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Humanos , Imidazóis/química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ratos , Deleção de Sequência
10.
Nucleic Acids Res ; 36(21): 6816-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18953025

RESUMO

We found that UP1, a proteolytic product of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), both enhances and represses the telomerase activity. The formation of the UP1-telomerase RNA-telomeric DNA ternary complex was revealed by a gel retardation experiment. The interactions in the ternary and binary complexes were elucidated by NMR. UP1 has two nucleic acid-binding domains, BD1 and BD2. In the UP1-telomerase RNA binary complex, both BD1 and BD2 interact with telomerase RNA. Interestingly, when telomeric DNA was added to the binary complex, telomeric DNA bound to BD1 in place of telomerase RNA. Thus, BD1 basically binds to telomeric DNA, while BD2 mainly binds to telomerase RNA, which resulted in the formation of the ternary complex. Here, UP1 bridges telomerase and telomeric DNA. It is supposed that UP1/hnRNP A1 serves to recruit telomerase to telomeric DNA through the formation of the ternary complex. A model has been proposed for how hnRNP A1/UP1 contributes to enhancement of the telomerase activity through recruitment and unfolding of the quadruplex of telomeric DNA.


Assuntos
DNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , RNA/química , Telomerase/química , Telômero/química , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , RNA/metabolismo , Telomerase/metabolismo
11.
Front Plant Sci ; 11: 614360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643331

RESUMO

Plant growth responses to cues such as light, temperature, and humidity enable the entrainment of the circadian rhythms with diurnal cycles. For example, the temperature variations between day and night affect plant growth and accompany the time lag to light cycle. Despite its importance, there has been no systematic investigation into time lags, and the mechanisms behind the entrainment of the circadian rhythms with multiple cycles remain unknown. Here, we investigated systemically the effects of the time lag on the circadian rhythm and growth in Arabidopsis thaliana. To investigate the entrainment status of the circadian clock, the rhythm of the clock gene CIRCADIAN CLOCK ASSOCIATION 1 (CCA1) was measured with a luciferase reporter assay. As a result, the rhythm was significantly modulated by the time lag with +10°C heating for 4 h every day but not -10°C cooling. A model based on coupled cellular oscillators successfully described these rhythm modulations. In addition, seedling growth depended on the time lag of the heating cycle but not that of the cooling cycle. Based on the relationship between the CCA1 rhythms and growth, we established an estimation method for the effects of the time lag. Our results found that plant growth relates to the CCA1 rhythm and provides a method by which to estimate the appropriate combination of light-dark and temperature cycles.

12.
Front Plant Sci ; 10: 227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967880

RESUMO

Productivity stabilization is a critical issue facing plant factories. As such, researchers have been investigating growth prediction with the overall goal of improving productivity. The projected area of a plant (PA) is usually used for growth prediction, by which the growth of a plant is estimated by observing the overall approximate movement of the plant. To overcome this problem, this study focused on the time-series movement of plant leaves, using optical flow (OF) analysis to acquire this information for a lettuce. OF analysis is an image processing method that extracts the difference between two consecutive frames caused by the movement of the subject. Experiments were carried out at a commercial large-scale plant factory. By using a microcomputer with a camera module placed above the lettuce seedlings, images of 338 seedlings were taken every 20 min over 9 days (from the 6th to the 15th day after sowing). Then, the features of the leaf movement were extracted from the image by calculating the normal-vector in the OF analysis, and these features were applied to machine learning to predict the fresh weight of the lettuce at harvest time (38 days after sowing). The growth prediction model using the features extracted from the OF analysis was found to perform well with a correlation ratio of 0.743. Furthermore, this study also considered a phenotyping system that was capable of automatically analyzing a plant image, which would allow this growth prediction model to be widely used in commercial plant factories.

13.
Cancer Sci ; 99(5): 1055-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18380794

RESUMO

Polyethylene glycol (PEG) has been reported to inhibit the development of colonic lesions in carcinogen-treated rats when administered orally. However, the precise mechanism for the chemopreventive activity of PEG remains largely elusive. Based on a characteristic feature of PEG as a 'fusogen', we investigated its potential as a chemotherapeutic agent through the induction of multinucleated cell formation and apoptosis induction in PC-3 prostate cancer cells. When PC-3 cells were treated with 0.5 and 1.0% PEG 1000, multinucleated cells were induced at a frequency of 8.4 and 13%, respectively, 36 h after PEG treatment under high cell density (1 x 10(6) cells in 100 microL PEG solution) in vitro. Although abnormality of cell cycle progression was not evident in PEG-treated PC-3 cells, multinucleated cells substantially disappeared at around 38 h due to apoptosis. In contrast, no apparent growth suppression was observed when PC-3 cells were exposed to up to 1.0% PEG at a much lower cell density, namely under ordinary culture conditions. Furthermore, injection of 0.5% PEG solution in vivo into PC-3 xenografts implanted in BALB/c-nu/nu male mice significantly suppressed tumor growth compared to phosphate-buffered saline injection. Multinucleated TdT-mediated dUTP-biotin nick end-labeling (TUNEL)-positive cells were observed inside the PEG-injected tumors. PEG was here demonstrated to have anticell proliferation and antitumor effects via induction of apoptosis, possibly by cell fusion. PEG injection therapy could therefore be adopted as an alternative chemotherapeutic strategy for localized prostate cancers, including those that become refractory to androgen-deprivation therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Células Gigantes/patologia , Polietilenoglicóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Diferenciação Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitose , Polietilenoglicóis/uso terapêutico , Neoplasias da Próstata/patologia
14.
Sci Adv ; 3(10): e1700808, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28983509

RESUMO

The phase response curve (PRC) of the circadian clock provides one of the most significant indices for anticipating entrainment of outer cycles, despite the difficulty of making precise PRC determinations in experiments. We characterized the PRC of the Arabidopsisthaliana circadian clock on the basis of its phase-locking property to variable periodic pulse perturbations. Experiments revealed that the PRC changed remarkably from continuous to discontinuous fashion, depending on the oscillation amplitude. Our hypothesis of amplitude-dependent adaptability to outer cycles was successfully clarified by elucidation of this transition of PRC as a change in the collective response of the circadian oscillator network. These findings provide an essential criterion against which to evaluate the precision of PRC measurement and an advanced understanding of the adaptability of plant circadian systems to environmental conditions.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos , Algoritmos , Relógios Circadianos/genética , Meio Ambiente , Medições Luminescentes/métodos , Modelos Biológicos , Fotoperíodo
15.
Mutat Res ; 598(1-2): 120-31, 2006 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-16513142

RESUMO

Mammalian genomes contain several types of repetitive sequences. Some of these sequences are implicated in various specific cellular events, including meiotic recombination, chromosomal breaks and transcriptional regulation, and also in several human disorders. In this review, we document the formation of DNA secondary structures by the G-rich repetitive sequences that have been found in several minisatellites, telomeres and in various triplet repeats, and report their effects on in vitro DNA synthesis. d(GGCAG) repeats in the mouse minisatellite Pc-1 were demonstrated to form an intra-molecular folded-back quadruplex structure (also called a G4' structure) by NMR and CD spectrum analyses. d(TTAGGG) telomere repeats and d(CGG) triplet repeats were also shown to form G4' and other unspecified higher order structures, respectively. In vitro DNA synthesis was substantially arrested within the repeats, and this could be responsible for the preferential mutability of the G-rich repetitive sequences. Electrophoretic mobility shift assays using NIH3T3 cell extracts revealed heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A3, which were tightly and specifically bound to d(GGCAG) and d(TTAGGG) repeats with K(d) values in the order of nM. HnRNP A1 unfolded the G4' structure formed in the d(GGCAG)(n) and d(TTAGGG)(n) repeat regions, and also resolved the higher order structure formed by d(CGG) triplet repeats. Furthermore, DNA synthesis arrest at the secondary structures of d(GGCAG) repeats, telomeres and d(CGG) triplet repeats was efficiently repressed by the addition of hnRNP A1. High expression of hnRNPs may contribute to the maintenance of G-rich repetitive sequences, including telomere repeats, and may also participate in ensuring the stability of the genome in cells with enhanced proliferation. Transcriptional regulation of genes, such as c-myc and insulin, by G4 sequences found in the promoter regions could be an intriguing field of research and help further elucidate the biological functions of the hnRNP family of proteins in human diseases.


Assuntos
DNA/química , Guanina , Células 3T3 , Animais , Sequência de Bases , Dicroísmo Circular , Camundongos , Peso Molecular , Conformação de Ácido Nucleico , Polimorfismo Genético , Sequências de Repetição em Tandem , Repetições de Trinucleotídeos
16.
Front Plant Sci ; 7: 394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242805

RESUMO

Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

17.
Ther Apher Dial ; 20(4): 339-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27523072

RESUMO

Selective plasma exchange is a blood purification therapy in which simple plasma exchange is performed using a selective membrane plasma separator (pore size of 0.03 µm). Seven critically ill patients accompanied with thrombocytopenia were treated with selective plasma exchange using fresh frozen plasma. The total bilirubin levels and prothrombin time international normalized ratios decreased significantly after treatment. The total protein, albumin, and fibrinogen levels increased significantly after treatment. Selective plasma exchange may be a useful blood purification therapy for removing causal substances and retaining coagulation factors in patients accompanied with thrombocytopenia.


Assuntos
Cuidados Críticos/métodos , Troca Plasmática/métodos , Trombocitopenia/terapia , Adulto , Idoso , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
18.
Front Plant Sci ; 7: 1114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27512400

RESUMO

Although, the circadian clock is a universal biological system in plants and it orchestrates important role of plant production such as photosynthesis, floral induction and growth, there are few such studies on cultivated species. Lettuce is one major cultivated species for both open culture and plant factories and there is little information concerning its circadian clock system. In addition, most of the relevant genes have not been identified. In this study, we detected circadian oscillation in the lettuce transcriptome using time-course RNA sequencing (RNA-Seq) data. Constant light (LL) and light-dark (LD) conditions were used to detect circadian oscillation because the circadian clock has some basic properties: one is self-sustaining oscillation under constant light and another is entrainment to environmental cycles such as light and temperature. In the results, 215 contigs were detected as common oscillating contigs under both LL and LD conditions. The 215 common oscillating contigs included clock gene-like contigs CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)-like, TOC1 (TIMING OF CAB EXPRESSION 1)-like and LHY (LATE ELONGATED HYPOCOTYL)-like, and their expression patterns were similar to those of Arabidopsis. Functional enrichment analysis by GO (gene ontology) Slim and GO Fat showed that the GO terms of response to light stimulus, response to stress, photosynthesis and circadian rhythms were enriched in the 215 common oscillating contigs and these terms were actually regulated by circadian clocks in plants. The 215 common oscillating contigs can be used to evaluate whether the gene expression pattern related to photosynthesis and optical response performs normally in lettuce.

19.
Front Plant Sci ; 7: 87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904059

RESUMO

The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light-dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control.

20.
Int J Oncol ; 26(3): 635-40, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703818

RESUMO

We have previously reported that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a major hnRNP, binds to G-rich repetitive sequences and quadruplex (G4') structures in DNA, including the 5'-TTAGGG-3' telomere repeat and 5'-GGCAG-3' short-tandem-repeat. DNA synthesis arrest at the (GGG) sites within these repeats in vitro was retrieved by the addition of the hnRNP A1 protein or its N-terminal proteolytic product, UP1, in a dose-dependent manner. Therefore, functional perturbation of hnRNP A1 may abrogate the genomic stability of telomere repeats and other G-rich sequences, independent of its major role in transcriptional and translational regulation. In the present study, we conducted genetic and expression analysis of the hnRNP A1 gene in sporadic human colorectal cancers to clarify its possible involvement in human carcinogenesis. Of 30 lesions, one harbored a mutation at the -11 position from the translation initiation site, but none in the coding region. A single nucleotide polymorphism, an A or G-allele, was found in the 5' upstream promoter region of the gene. Quantitative gene expression analysis revealed that 60% (18/30) of cases showed over-expression of hnRNP A1 in cancer tissues by 2-fold or greater, compared to their normal colon tissues, with values of 78, 64 and 40% for clinicopathological stages II, III and IV, respectively. Although the biological consequences of hnRNP A1 overexpression in colorectal cancers remain to be clarified, it could contribute to maintenance of telomere repeats in cancer cells with enhanced cell proliferation. Alternatively, since the variations in the stoichiometry of hnRNP family proteins are considered to affect cell-specific gene expression, quantitative alteration of hnRNP A1 could result in facilitation of transformation of colon epithelial cells as a consequence of transcriptional and translational perturbation.


Assuntos
Neoplasias Colorretais/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telômero , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA