Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 59(1): 165-171, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776892

RESUMO

Objectives: Congenital disorders of N-glycosylation (CDG) are a large group of rare metabolic disorders caused by defects in the most common post-translational modification of proteins. CDGs are often difficult to diagnose as they are manifested with non-specific symptoms and signs. Analysis of serum transferrin (TRF) isoforms, as the classical procedure used to identify a CDG patient, enables to predict pathological steps in the N-linked glycosylation process. Methods: We devised a new strategy based on liquid chromatography-mass spectrometry (LC-MS) for the analysis of TRF isoforms by combining a simple and fast sample preparation with a specific chromatographic cleanup/separation step followed by mass-spectrometric measurement. Single TRF isoform masses were obtained through reconstruction of multiply charged electrospray data collected by quadrupole-MS technology. Hereby, we report the first analyzed serum samples obtained from 20 CDG patients and 100 controls. Results: The ratio of desialylated isoforms to total TRF was calculated for patients and controls. CDG-Type I patients showed higher amounts of bi-sialo isoform (range: 6.7-29.6%) compared to controls (<5.5%, mean percentage 3.9%). CDG-Type II pattern showed an increased peak of tri-sialo isoforms. The mean percentage of tri-sialo-TRF was 9.3% (range: 2.9-12.9%) in controls, which was lower than that obtained from two patients with COG5-CDG and MAN1B1-CDG (18.5 and 24.5%). Intraday and between-day imprecisions were less than 9 and 16%, respectively, for bi-sialo- and less than 3 and 6% for tri-sialo-TRF. Conclusions: This LC-MS-based approach provides a simple, sensitive and fast analytical tool for characterizing CDG disorders in a routine clinical biochemistry while improving diagnostic accuracy and speeding clinical decision-making.


Assuntos
Cromatografia Líquida/métodos , Defeitos Congênitos da Glicosilação/diagnóstico , Glicoproteínas/sangue , Espectrometria de Massas/métodos , Transferrina/análise , Defeitos Congênitos da Glicosilação/sangue , Glicoproteínas/química , Glicosilação , Humanos , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Transferrina/química
2.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364180

RESUMO

N-acetylglutamate synthase deficiency (NAGSD) is an extremely rare urea cycle disorder (UCD) with few adult cases so far described. Diagnosis of late-onset presentations is difficult and delayed treatment may increase the risk of severe hyperammonemia. We describe a 52-year-old woman with recurrent headaches who experienced an acute onset of NAGSD. As very few papers focus on headaches in UCDs, we also report a literature review of types and pathophysiologic mechanisms of UCD-related headaches. In our case, headaches had been present since puberty (3-4 days a week) and were often accompanied by nausea, vomiting, or behavioural changes. Despite three previous episodes of altered consciousness, ammonia was measured for the first time at 52 years and levels were increased. Identification of the new homozygous c.344C>T (p.Ala115Val) NAGS variant allowed the definite diagnosis of NAGSD. Bioinformatic analysis suggested that an order/disorder alteration of the mutated form could affect the arginine-binding site, resulting in poor enzyme activation and late-onset presentation. After optimized treatment for NAGSD, ammonia and amino acid levels were constantly normal and prevented other headache bouts. The manuscript underlies that headache may be the presenting symptom of UCDs and provides clues for the rapid diagnosis and treatment of late-onset NAGSD.


Assuntos
Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Idade de Início , Aminoácido N-Acetiltransferase/metabolismo , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Eletroencefalografia , Feminino , Glutamatos/uso terapêutico , Humanos , Pessoa de Meia-Idade , Avaliação de Sintomas , Resultado do Tratamento , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Distúrbios Congênitos do Ciclo da Ureia/terapia
3.
Metab Brain Dis ; 32(5): 1383-1388, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28664505

RESUMO

SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate. Mutations in ALDH5A1 gene result in the abnormal accumulation of γ-hydroxybutyrate (GHB), which is pathognomonic of SSADHD. In the present report, diagnosis of SSADHD in a three-month-old female was achieved by detection of high levels of GHB in urine. Sequence analysis of ALDH5A1 gene showed that the patient was a compound heterozygote for c.1226G > A (p.G409D) and the novel missense mutation, c.1498G > C (p.V500 L). By ALDH5A1 gene expression in transiently transfected HEK293 cells and enzyme activity assays, we demonstrate that the p.V500 L mutation, despite being conservative, produces complete loss of enzyme activity. In silico protein modelling analysis and evaluation of tetramer destabilizing energies suggest that structural impairment and partial occlusion of the access channel to the active site affect enzyme activity. These findings add further knowledge on the missense mutations associated with SSADHD and the molecular mechanisms underlying the loss of the enzyme activity.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Ácido gama-Aminobutírico/análogos & derivados , Sítios de Ligação , Simulação por Computador , DNA/genética , Feminino , Células HEK293 , Heterozigoto , Humanos , Lactente , Modelos Moleculares , Mutação/genética , Mutação de Sentido Incorreto , Linhagem , Oxibato de Sódio/urina , Succinato-Semialdeído Desidrogenase/genética , Ácido gama-Aminobutírico/metabolismo
5.
Clin Chem Lab Med ; 54(4): 627-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26466166

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency has been recently introduced in the newborn screening program in Tuscany. In order to improve the PNP screening efficiency, we developed a 2nd tier test to quantify PNP primary markers deoxyguanosine (dGuo) and deoxyinosine (dIno). METHODS: Dried blood spots (DBS) samples were extracted with 200 µL of methanol and 100 µL of water (by two steps). Internal standards were added at a final concentration of 10 µmol/L. After extraction, samples were analysed by LC-MS/MS. The chromatographic run was performed in gradient mode by using a Synergi Fusion column. RESULTS: The assay was linear over a concentration range of 0.05-50 µmol/L (R2>0.999) for dGuo and 0.5-50 µmol/L (R2>0.998) for dIno. Intra- and interassay imprecision (mean CVs) for dIno and dGuo ranged from 2.9% to 12%. Limit of quantitaion (LOQ) were found to be 0.05 µmol/L and 0.5 µmol/L for dGuo and dIno, respectively. The reference ranges, obtained by measuring dGuo and dIno concentrations on DBS, were close to zero for both biomarkers. Moreover, DBS samples from seven patients with confirmed PNP were retrospectively evaluated and correctly identified. CONCLUSIONS: The LC-MS/MS method can reliably measure dIno and dGuo in DBS for the diagnosis of PNP. Validation data confirm the present method is characterised by good reproducibility, accuracy and imprecision for the quantitation of dIno and dGuo. The assay also appears suitable for use in monitoring treatment of PNP patients.


Assuntos
Teste em Amostras de Sangue Seco , Triagem Neonatal , Purina-Núcleosídeo Fosforilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/sangue , Adulto , Cromatografia Líquida , Humanos , Recém-Nascido , Doenças da Imunodeficiência Primária , Purina-Núcleosídeo Fosforilase/sangue , Purina-Núcleosídeo Fosforilase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Espectrometria de Massas em Tandem
6.
J Allergy Clin Immunol ; 134(1): 155-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767876

RESUMO

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency is a rare form of autosomal recessive combined primary immunodeficiency caused by a enzyme defect leading to the accumulation of inosine, 2'-deoxy-inosine (dIno), guanosine, and 2'-deoxy-guanosine (dGuo) in all cells, especially lymphocytes. Treatments are available and curative for PNP deficiency, but their efficacy depends on the early approach. PNP-combined immunodeficiency complies with the criteria for inclusion in a newborn screening program. OBJECTIVE: This study evaluate whether mass spectrometry can identify metabolite abnormalities in dried blood spots (DBSs) from affected patients, with the final goal of individuating the disease at birth during routine newborn screening. METHODS: DBS samples from 9 patients with genetically confirmed PNP-combined immunodeficiency, 10,000 DBS samples from healthy newborns, and 240 DBSs from healthy donors of different age ranges were examined. Inosine, dIno, guanosine, and dGuo were tested by using tandem mass spectrometry (TMS). T-cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) levels were evaluated by using quantitative RT-PCR only for the 2 patients (patients 8 and 9) whose neonatal DBSs were available. RESULTS: Mean levels of guanosine, inosine, dGuo, and dIno were 4.4, 133.3, 3.6, and 3.8 µmol/L, respectively, in affected patients. No indeterminate or false-positive results were found. In patient 8 TREC levels were borderline and KREC levels were abnormal; in patient 9 TRECs were undetectable, whereas KREC levels were normal. CONCLUSION: TMS is a valid method for diagnosis of PNP deficiency on DBSs of affected patients at a negligible cost. TMS identifies newborns with PNP deficiency, whereas TREC or KREC measurement alone can fail.


Assuntos
Síndromes de Imunodeficiência/diagnóstico , Mutação , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Adolescente , Pré-Escolar , Reparo do DNA , Desoxiguanosina/análise , Desoxiguanosina/metabolismo , Teste em Amostras de Sangue Seco , Feminino , Guanosina/análise , Guanosina/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Lactente , Recém-Nascido , Inosina/análogos & derivados , Inosina/análise , Inosina/metabolismo , Linfócitos/patologia , Masculino , Triagem Neonatal , Doenças da Imunodeficiência Primária , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/patologia , Espectrometria de Massas em Tandem
7.
J Allergy Clin Immunol ; 131(6): 1604-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280131

RESUMO

BACKGROUND: Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. OBJECTIVE: We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. METHODS: We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. RESULTS: The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 µmol/L (normal value, <1.5 µmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 µmol/L (normal value, <0.07 µmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. CONCLUSION: Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency.


Assuntos
Adenosina Desaminase/sangue , Agamaglobulinemia/diagnóstico , Receptores de Antígenos de Linfócitos T/sangue , Imunodeficiência Combinada Severa/diagnóstico , Espectrometria de Massas em Tandem , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Desoxiadenosinas/metabolismo , Ativação Enzimática , Eritrócitos/metabolismo , Humanos , Imunoglobulinas/sangue , Imunofenotipagem , Recém-Nascido , Subpopulações de Linfócitos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Estudos Retrospectivos
8.
Eur J Mass Spectrom (Chichester) ; 19(6): 497-503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24378468

RESUMO

In recent years, new treatments have become available to treat some lysosomal storage disorders (LSDs) and many studies suggest that there is a benefit with starting therapy early. Newborn screening should detect diseases early enough for prompt treatment. Some countries include additional conditions, such as some LSDs, into their newborn screening panels. Mucopolysaccharidosis Type I (MPS I) is an autosomal recessive disorder caused by the deficiency of α-L-iduronidase (IDUA) activity. Currently, enzyme replacement therapy (ERT) or bone marrow transplantation is available and this has raised a growing interest for the development of a newborn screening test. In 2009, we reported a new fast and simplified tandem mass spectrometry-based method for quantifying five enzyme activities on dried blood spots. Here, we describe the inclusion of IDUA activity determination for the simultaneous detection of six lysosomal storage diseases. We have defined reference normal ranges by testing 680 healthy newborns and 240 adults. The assay was checked through three confirmed MPS I patients whose IDUA activity was below the normal range. Reproducibility of the assays has been established by assessing the intra-day and inter-day assay imprecisions. This quick assay has been devised to be implemented in newborn screening by liquid chromatography tandem mass spectrometry.


Assuntos
Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco/métodos , Espectrometria de Massas/métodos , Mucopolissacaridose I/diagnóstico , Triagem Neonatal/métodos , Cromatografia Líquida/normas , Teste em Amostras de Sangue Seco/normas , Humanos , Iduronidase/análise , Iduronidase/sangue , Iduronidase/química , Recém-Nascido , Espectrometria de Massas/normas , Reprodutibilidade dos Testes
9.
Int J Neonatal Screen ; 8(3)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997437

RESUMO

Newborn screening (NBS) for inborn errors of metabolism is one of the most advanced tools for secondary prevention in medicine, as it allows early diagnosis and prompt treatment initiation. The expanded newborn screening was introduced in Italy between 2016 and 2017 (Law 167/2016; DM 13 October 2016; DPCM 12-1-2017). A total of 1,586,578 infants born in Italy were screened between January 2017 and December 2020. For this survey, we collected data from 15 Italian screening laboratories, focusing on the metabolic disorders identified by tandem mass spectrometry (MS/MS) based analysis between January 2019 and December 2020. Aminoacidemias were the most common inborn errors in Italy, and an equal percentage was observed in detecting organic acidemias and mitochondrial fatty acids beta-oxidation defects. Second-tier tests are widely used in most laboratories to reduce false positives. For example, second-tier tests for methylmalonic acid and homocysteine considerably improved the screening of CblC without increasing unnecessary recalls. Finally, the newborn screening allowed us to identify conditions that are mainly secondary to a maternal deficiency. We describe the goals reached since the introduction of the screening in Italy by exchanging knowledge and experiences among the laboratories.

10.
NEJM Evid ; 1(7): EVIDoa2200052, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-38319253

RESUMO

BACKGROUND: Mucopolysaccharidosis type VI (MPS VI) is an inherited multisystem lysosomal disorder due to arylsulfatase B (ARSB) deficiency that leads to widespread accumulation of glycosaminoglycans (GAG), which are excreted in increased amounts in urine. MPS VI is characterized by progressive dysostosis multiplex, connective tissue and cardiac involvement, and hepatosplenomegaly. Enzyme replacement therapy (ERT) is available but requires life-long and costly intravenous infusions; moreover, it has limited efficacy on diseased skeleton and cardiac valves, compromised pulmonary function, and corneal opacities. METHODS: We enrolled nine patients with MPS VI 4 years of age or older in a phase 1/2 open-label gene therapy study. After ERT was interrupted, patients each received a single intravenous infusion of an adeno-associated viral vector serotype 8 expressing ARSB. Participants were sequentially enrolled in one of three dose cohorts: low (three patients), intermediate (two patients), or high (four patients). The primary outcome was safety; biochemical and clinical end points were secondary outcomes. RESULTS: The infusions occurred without severe adverse events attributable to the vector, meeting the prespecified end point. Participants in the low and intermediate dose cohorts displayed stable serum ARSB of approximately 20% of the mean healthy value but returned to ERT by 14 months after gene therapy because of increased urinary GAG. Participants in the high-dose cohort had sustained serum ARSB of 30% to 100% of the mean healthy value and a modest urinary GAG increase that did not reach a concentration at which ERT reintroduction was needed. In the high-dose group, there was no clinical deterioration for up to 2 years after gene therapy. CONCLUSIONS: Liver-directed gene therapy for participants with MPS VI did not have a dose-limiting side-effect and adverse event profile; high-dose treatment resulted in ARSB expression over at least 24 months with preliminary evidence of disease stabilization. (Funded by the Telethon Foundation ETS, the European Commission Seventh Framework Programme, and the Isaac Foundation; ClinicalTrials.gov number, NCT03173521; EudraCT number, 2016-002328-10.)


Assuntos
Dependovirus , Terapia Genética , Mucopolissacaridose VI , N-Acetilgalactosamina-4-Sulfatase , Humanos , Terapia Genética/métodos , Mucopolissacaridose VI/terapia , Mucopolissacaridose VI/genética , Mucopolissacaridose VI/urina , Masculino , Feminino , Dependovirus/genética , Criança , Adolescente , Pré-Escolar , N-Acetilgalactosamina-4-Sulfatase/genética , Adulto , Adulto Jovem , Vetores Genéticos/administração & dosagem , Fígado/metabolismo , Fígado/patologia , Terapia de Reposição de Enzimas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA