Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Synapse ; 73(1): e22067, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120794

RESUMO

Dysfunction of mitochondrial activity is often associated with the onset and progress of neurodegenerative diseases. Membrane depolarization induced by Na+ influx increases intracellular Ca2+ levels in neurons, which upregulates mitochondrial activity. However, overlimit of Na+ influx and its prolonged retention ultimately cause excitotoxicity leading to neuronal cell death. To return the membrane potential to the normal level, Na+ /K+ -ATPase exchanges intracellular Na+ with extracellular K+ by consuming a large amount of ATP. This is a reason why mitochondria are important for maintaining neurons. In addition, astrocytes are thought to be important for supporting neighboring neurons by acting as energy providers and eliminators of excessive neurotransmitters. In this study, we examined the meaning of changes in the mitochondrial oxygen consumption rate (OCR) in primary mouse neuronal populations. By varying the medium constituents and using channel modulators, we found that pyruvate rather than lactate supported OCR levels and conferred on neurons resistance to glutamate-mediated excitotoxicity. Under a pyruvate-restricted condition, our OCR monitoring could detect excitotoxicity induced by glutamate at only 10 µM. The OCR monitoring also revealed the contribution of the N-methyl-D-aspartate receptor and Na+ /K+ -ATPase to the toxicity, which allowed evaluating spontaneous excitation. In addition, the OCR monitoring showed that astrocytes preferentially used glutamate, not glutamine, for a substrate of the tricarboxylic acid cycle. This mechanism may be coupled with astrocyte-dependent protection of neurons from glutamate-mediated excitotoxicity. These results suggest that OCR monitoring would provide a new powerful tool to analyze the mechanisms underlying neurotoxicity and protection against it.


Assuntos
Ácido Glutâmico/toxicidade , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Animais , Respiração Celular , Células Cultivadas , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Pirúvico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Adv Exp Med Biol ; 1123: 71-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016596

RESUMO

Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells, show heterogeneity with respect to their pluripotency, self-renewal ability, and other traits. PSC heterogeneity may exist among cell lines, among cells within a line, and among temporal states of individual cells. Both genetic and epigenetic factors can cause heterogeneity among cell lines. Heterogeneity among cells within a cell line may arise during long-term culturing even when a PSC cell line is derived from a single cell. Moreover, the expression levels of genes and proteins in PSCs fluctuate continuously at a frequency ranging from a few hours to a few days. Such heterogeneity decreases the reproducibility of research. Thus, methods related to the detection, reduction, and control of heterogeneity in experiments involving human PSCs need to be developed. Further, the presupposition that PSCs are highly heterogeneous should be taken into account by all researchers not only when they plan their own studies but also when they review the studies of other researchers in this field.


Assuntos
Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas
3.
Exp Cell Res ; 352(2): 333-345, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215634

RESUMO

Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
4.
Development ; 141(1): 91-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24284203

RESUMO

Human embryonic stem cells (hESCs) and their derivatives are expected to be used in drug discovery, regenerative medicine and the study of human embryogenesis. Because hepatocyte differentiation from hESCs has the potential to recapitulate human liver development in vivo, we employed this differentiation method to investigate the molecular mechanisms underlying human hepatocyte differentiation. A previous study has shown that a gradient of transforming growth factor beta (TGFß) signaling is required to segregate hepatocyte and cholangiocyte lineages from hepatoblasts. Although CCAAT/enhancer binding proteins (c/EBPs) are known to be important transcription factors in liver development, the relationship between TGFß signaling and c/EBP-mediated transcriptional regulation in the hepatoblast fate decision is not well known. To clarify this relationship, we examined whether c/EBPs could determine the hepatoblast fate decision via regulation of TGFß receptor 2 (TGFBR2) expression in the hepatoblast-like cells differentiated from hESCs. We found that TGFBR2 promoter activity was negatively regulated by c/EBPα and positively regulated by c/EBPß. Moreover, c/EBPα overexpression could promote hepatocyte differentiation by suppressing TGFBR2 expression, whereas c/EBPß overexpression could promote cholangiocyte differentiation by enhancing TGFBR2 expression. Our findings demonstrated that c/EBPα and c/EBPß determine the lineage commitment of hepatoblasts by negatively and positively regulating the expression of a common target gene, TGFBR2, respectively.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hepatócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/biossíntese , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
5.
J Biol Chem ; 290(33): 20071-85, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26100630

RESUMO

We have generated a mouse monoclonal antibody (R-17F, IgG1 subtype) specific to human induced pluripotent stem (hiPS)/embryonic stem (ES) cells by using a hiPS cell line as an antigen. Triple-color confocal immunostaining images of hiPS cells with R-17F indicated that the R-17F epitope was expressed exclusively and intensively on the cell membranes of hiPS cells and co-localized partially with those of SSEA-4 and SSEA-3. Lines of evidence suggested that the predominant part of the R-17F epitope was a glycolipid. Upon TLC blot of total lipid extracts from hiPS cells with R-17F, one major R-17F-positive band was observed at a slow migration position close to that of anti-blood group H1(O) antigen. MALDI-TOF-MS and MS(n) analyses of the purified antigen indicated that the presumptive structure of the R-17F antigen was Fuc-Hex-HexNAc-Hex-Hex-Cer. Glycan microarray analysis involving 13 different synthetic oligosaccharides indicated that R-17F bound selectively to LNFP I (Fucα1-2Galß1-3GlcNAcß1-3Galß1-4Glc). A critical role of the terminal Fucα1-2 residue was confirmed by the selective disappearance of R-17F binding to the purified antigen upon α1-2 fucosidase digestion. Most interestingly, R-17F, when added to hiPS/ES cell suspensions, exhibited potent dose-dependent cytotoxicity. The cytotoxic effect was augmented markedly upon the addition of the secondary antibody (goat anti-mouse IgG1 antibody). R-17F may be beneficial for safer regenerative medicine by eliminating residual undifferentiated hiPS cells in hiPS-derived regenerative tissues, which are considered to be a strong risk factor for carcinogenesis.


Assuntos
Anticorpos/imunologia , Citotoxicidade Imunológica , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligossacarídeos/imunologia , Sequência de Carboidratos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Oligossacarídeos/química
6.
In Vitro Cell Dev Biol Anim ; 60(5): 563-568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472720

RESUMO

Human pluripotent stem cells, such as human embryonic stem cells and human induced pluripotent stem cells, are used in basic research and various applied fields, including drug discovery and regenerative medicine. Stem cell technologies have developed rapidly in recent years, and the supply of culture materials has improved. This has facilitated the culture of human pluripotent stem cells and has enabled an increasing number of researchers and bioengineers to access this technology. At the same time, it is a challenge to share the basic concepts and techniques of this technology among researchers and technicians to ensure the reproducibility of research results. Human pluripotent stem cells differ from conventional somatic cells in many aspects, and many points need to be considered in their handling, even for those experienced in cell culture. Therefore, we have prepared this proposal, "Points of Consideration for Pluripotent Stem Cell Culture," to promote the effective use of human pluripotent stem cells. This proposal includes seven items to be considered and practices to be confirmed before using human pluripotent stem cells. These are laws/guidelines and consent/material transfer agreements, diversity of pluripotent stem cells, culture materials, thawing procedure, media exchange and cell passaging, freezing procedure, and culture management. We aim for the concept of these points of consideration to be shared by researchers and technicians involved in the cell culture of pluripotent stem cells. In this way, we hope the reliability of research using pluripotent stem cells can be improved, and cell culture technology will advance.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Criopreservação/métodos , Meios de Cultura/química
7.
In Vitro Cell Dev Biol Anim ; 60(5): 521-534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38169039

RESUMO

Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.


Assuntos
Diferenciação Celular , Cromossomos Humanos Par 12 , Células-Tronco Pluripotentes , Trissomia , Humanos , Diferenciação Celular/genética , Trissomia/genética , Cromossomos Humanos Par 12/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Mesoderma/citologia , Endoderma/citologia , Endoderma/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Linhagem Celular , Transdução de Sinais/genética
8.
Glycobiology ; 23(3): 322-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23154990

RESUMO

We have generated a monoclonal antibody (R-10G) specific to human induced pluripotent stem (hiPS)/embryonic stem (hES) cells by using hiPS cells (Tic) as an antigen, followed by differential screening of mouse hybridomas with hiPS and human embryonal carcinoma (hEC) cells. Upon western blotting with R-10G, hiPS/ES cell lysates gave a single but an unusually diffuse band at a position corresponding to >250 kDa. The antigen protein was isolated from the induced pluripotent stem (iPS) cell lysates with an affinity column of R-10G. The R-10G positive band was resistant to digestion with peptide N-glycanase F (PNGase F), neuraminidase, fucosidase, chondrotinase ABC and heparinase mix, but it disappeared almost completely on digestion with keratanase, keratanase II and endo-ß-galactosidase, indicating that the R-10G epitope is a keratan sulfate. The carrier protein of the R-10G epitope was identified as podocalyxin by liquid chromatography/mass spectrometry (LC/MS/MS) analysis of the R-10G positive-protein band material obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The R-10G epitope is a type of keratan sulfate with some unique properties. (1) The epitope is expressed only on hiPS/ES cells, i.e. not on hEC cells, unlike those recognized by the conventional hiPS/ES marker antibodies. (2) The epitope is a type of keratan sulfate lacking oversulfated structures and is not immunologically cross-reactive with high-sulfated keratan sulfate. (3) The R-10G epitope is distributed heterogeneously on hiPS cells, suggesting that a single colony of undifferentiated hiPS cells consists of different cell subtypes. Thus, R-10G is a novel antibody recognizing hiPS/ES cells, and should be a new molecular probe for disclosing the roles of glycans on these cells.


Assuntos
Anticorpos Monoclonais/imunologia , Células-Tronco Embrionárias/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Sulfato de Queratano/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Sulfato de Queratano/química , Camundongos , Camundongos Endogâmicos C57BL
9.
Mol Ther ; 20(1): 127-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22068426

RESUMO

Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity.


Assuntos
Células-Tronco Embrionárias/citologia , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Transdução Genética , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Técnicas de Transferência de Genes , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Tempo
10.
J Hepatol ; 57(3): 628-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659344

RESUMO

BACKGROUND & AIMS: Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can be utilized as a tool for screening for hepatotoxicity in the early phase of pharmaceutical development. We have recently reported that hepatic differentiation is promoted by sequential transduction of SOX17, HEX, and HNF4α into hESC- or hiPSC-derived cells, but further maturation of hepatocyte-like cells is required for widespread use of drug screening. METHODS: To screen for hepatic differentiation-promoting factors, we tested the seven candidate genes related to liver development. RESULTS: The combination of two transcription factors, FOXA2 and HNF1α, promoted efficient hepatic differentiation from hESCs and hiPSCs. The expression profile of hepatocyte-related genes (such as genes encoding cytochrome P450 enzymes, conjugating enzymes, hepatic transporters, and hepatic nuclear receptors) achieved with FOXA2 and HNF1α transduction was comparable to that obtained in primary human hepatocytes. The hepatocyte-like cells generated by FOXA2 and HNF1α transduction exerted various hepatocyte functions including albumin and urea secretion, and the uptake of indocyanine green and low density lipoprotein. Moreover, these cells had the capacity to metabolize all nine tested drugs and were successfully employed to evaluate drug-induced cytotoxicity. CONCLUSIONS: Our method employing the transduction of FOXA2 and HNF1α represents a useful tool for the efficient generation of metabolically functional hepatocytes from hESCs and hiPSCs, and the screening of drug-induced cytotoxicity.


Assuntos
Células-Tronco Embrionárias/citologia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Bupropiona/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Etanolaminas/metabolismo , Técnicas de Transferência de Genes , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hepatócitos/enzimologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Midazolam/metabolismo , Paclitaxel/metabolismo , Fenacetina/metabolismo , Testosterona/metabolismo , Tolbutamida/metabolismo , Transdução Genética
11.
Mol Ther ; 19(2): 400-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21102561

RESUMO

Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into all cell lineages, including hepatocytes, in vitro. Induced hepatocytes have a wide range of potential application in biomedical research, drug discovery, and the treatment of liver disease. However, the existing protocols for hepatic differentiation of PSCs are not very efficient. In this study, we developed an efficient method to induce hepatoblasts, which are progenitors of hepatocytes, from human ESCs and iPSCs by overexpression of the HEX gene, which is a homeotic gene and also essential for hepatic differentiation, using a HEX-expressing adenovirus (Ad) vector under serum/feeder cell-free chemically defined conditions. Ad-HEX-transduced cells expressed α-fetoprotein (AFP) at day 9 and then expressed albumin (ALB) at day 12. Furthermore, the Ad-HEX-transduced cells derived from human iPSCs also produced several cytochrome P450 (CYP) isozymes, and these P450 isozymes were capable of converting the substrates to metabolites and responding to the chemical stimulation. Our differentiation protocol using Ad vector-mediated transient HEX transduction under chemically defined conditions efficiently generates hepatoblasts from human ESCs and iPSCs. Thus, our methods would be useful for not only drug screening but also therapeutic applications.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes Homeobox/fisiologia , Hepatócitos/citologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/fisiologia , Adenoviridae/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Homeobox/genética , Vetores Genéticos/genética , Proteínas de Homeodomínio/genética , Humanos , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 105(36): 13409-14, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18725626

RESUMO

A major limitation in developing applications for the use of human embryonic stem cells (HESCs) is our lack of knowledge of their responses to specific cues that control self-renewal, differentiation, and lineage selection. HESCs are most commonly maintained on inactivated mouse embryonic fibroblast feeders in medium supplemented with FCS, or proprietary replacements such as knockout serum-replacement together with FGF-2. These undefined culture conditions hamper analysis of the mechanisms that control HESC behavior. We have now developed a defined serum-free medium, hESF9, for the culture of HESCs on a type I-collagen substrate without feeders. In contrast to other reported media for the culture of HESCs, this medium has a lower osmolarity (292 mosmol/liter), l-ascorbic acid-2-phosphate (0.1 microg/ml), and heparin. Insulin, transferrin, albumin conjugated with oleic acid, and FGF-2 (10 ng/ml) were the only protein components. Further, we found that HESCs would proliferate in the absence of exogenous FGF-2 if heparin was also present. However, their growth was enhanced by the addition of FGF-2 up to 10 ng/ml although higher concentrations were deleterious in the presence of heparin.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Heparina/farmacologia , Linhagem Celular , Proliferação de Células , Meios de Cultura Livres de Soro , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Transdução de Sinais
13.
FASEB J ; 23(1): 114-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18809738

RESUMO

Formation of the primitive streak (PS) is the initial specification step that generates all the mesodermal and endodermal tissue lineages during early differentiation. Thus, a therapeutically compatible and efficient method for differentiation of the PS is crucial for regenerative medicine. In this study, we developed chemically defined serum-free culture conditions for the differentiation of embryonic stem (ES) cells into the PS-like cells. Cultures supplemented with Wnt showed induction of expression of a PS marker, the brachyury gene, followed by induction of the anterior PS markers goosecoid and foxa2, a posterior PS marker, evx1, and the endoderm marker sox17. Similar differentiation of PS by Wnt was also observed in human ES cells. Moreover, we revealed that the activation of the Wnt canonical pathway is essential for PS differentiation in mouse ES cells. These results demonstrated that Wnt is an essential and sufficient factor for the induction of the PS-like cells in vitro. These conditions of induction could constitute the initial step in generating therapeutically useful cells of the definitive endoderm lineage, such as hepatocytes and pancreatic endocrine cells, under chemically defined conditions.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Linha Primitiva/efeitos dos fármacos , Linha Primitiva/fisiologia , Proteínas Wnt/farmacologia , Ativinas/farmacologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Meios de Cultura Livres de Soro , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Camundongos , Transdução de Sinais , Proteínas Wnt/administração & dosagem , Proteína Wnt3
14.
In Vitro Cell Dev Biol Anim ; 56(7): 505-510, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32812205

RESUMO

Cleft lip and palate are the most common congenital abnormalities that occur early in pregnancy. The majority of cranial mesenchyme is derived from cranial neural crest cells that differentiate into odontoblasts, cartilage, craniofacial bone, and connective tissue. A subset of these cells differentiates into cranial ganglia. We have previously reported an induction protocol of cranial neural crest cell-like cells from human pluripotent stem cells. This study tested detection of the cytotoxic sensitivities of dental materials, including titanium ions, palladium ions, and hydroxyethyl methacrylate, on the cell viability of induced cranial neural crest cell-like cells (iNC-LCs) derived from Tic human induced pluripotent stem cell (hiPSC) line. Further, the sensitivity was compared with those of human fetal lung fibroblastic cell line MRC-5, which is origin of Tic hiPSC, and osteoblastic cell line MC3T3-E1 which was derived from mouse calvaria. The results suggested that this cell-based assay system using iNC-LCs is a potential method for in vitro screening as an alternative to animal testing to predict toxic effects of dental materials on early craniofacial development.


Assuntos
Bioensaio/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Crista Neural/citologia , Crânio/citologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metacrilatos/farmacologia , Paládio/farmacologia , Titânio/farmacologia
15.
Methods Mol Biol ; 1965: 35-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069667

RESUMO

Cranial neural crest cells (NCCs) migrate to the branchial arches and give rise to the majority of cranial mesenchyme that eventually differentiates into odontoblasts, cartilage, craniofacial bone, and connective tissue; a subset of these cells differentiate into cranial ganglia. Here we present a protocol that describes directed differentiation method of human pluripotent stem cells into cranial NCC-like cells and a cytotoxicity assay using hPSC-derived cranial NCC-like cells. This cell-based assay system allows for high-sensitive cytotoxicity detection of test chemicals. These methods can be applied to predict drug/chemical toxicity effect on early craniofacial development.


Assuntos
Encéfalo/citologia , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Modelos Biológicos , Testes de Toxicidade
16.
Stem Cells ; 25(12): 3005-15, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17717067

RESUMO

Extracellular matrix (ECM) components regulate stem-cell behavior, although the exact effects elicited in embryonic stem (ES) cells are poorly understood. We previously developed a simple, defined, serum-free culture medium that contains leukemia inhibitory factor (LIF) for propagating pluripotent mouse embryonic stem (mES) cells in the absence of feeder cells. In this study, we determined the effects of ECM components as culture substrata on mES cell self-renewal in this culture medium, comparing conventional culture conditions that contain serum and LIF with gelatin as a culture substratum. mES cells remained undifferentiated when cultured on type I and type IV collagen or poly-D-lysine. However, they differentiated when cultured on laminin or fibronectin as indicated by altered morphologies, the activity of alkaline phosphatase decreased, Fgf5 expression increased, and Nanog and stage-specific embryonic antigen 1 expression decreased. Under these conditions, the activity of signal transducer and activator of transcription (STAT)3 and Akt/protein kinase B (PKB), which maintain cell self-renewal, decreased. In contrast, the extracellular signal-regulated kinase (ERK)1/2 activity, which negatively controls cell self-renewal, increased. In the defined conditions, mES cells did not express collagen-binding integrin subunits, but they expressed laminin- and fibronectin-binding integrin subunits. The expression of some collagen-binding integrin subunits was downregulated in an LIF concentration-dependent manner. Blocking the interactions between ECM and integrins inhibited this differentiation. Conversely, the stimulation of ECM-integrin interactions by overexpressing collagen-binding integrin subunits induced differentiation of mES cells cultured on type I collagen. The results of the study indicated that inactivation of the integrin signaling is crucial in promoting mouse embryonic stem cell self-renewal. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Integrinas/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/fisiologia , Integrinas/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Int J Dev Biol ; 62(9-10): 613-621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378385

RESUMO

Cell morphology is recognized as an important hallmark of neural cells. During the differentiation of human pluripotent stem cells (hPSCs) into neural cells, cell morphology changes dynamically. Therefore, characterization of the morphology of cells during this period is important to improve our understanding of the differentiation and development of neural cells. General methods for the directed induction of hPSCs include the steps of multi-cellular aggregation or high-density cell culture, particularly at the early phase of neural differentiation, and therefore, the morphology of each differentiating cell is difficult to recognize. Here, we have developed a new method for the directed differentiation of neuroepithelial-like cells (NELCs) from hPSCs at a low cell density in an adherent monolayer culture, as well as an image-processing algorithm to evaluate the cell morphology of differentiating NELCs, in order to follow cell morphology during the differentiation of hPSCs into NELCs. Using these methods, the morphological transition of differentiating cells was observed in real time using phase contrast imaging and then quantified. Because cell morphology is also considered an inherent biological marker of neural cells cultured in vitro, this method is potentially useful to study the mechanisms underlying neural cell differentiation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células Neuroepiteliais/citologia , Neurogênese , Neurônios/citologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Neuroepiteliais/metabolismo , Neurônios/metabolismo
18.
J Biosci Bioeng ; 126(3): 379-388, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29681444

RESUMO

Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Adesão Celular/efeitos dos fármacos , Contagem de Células , Células Cultivadas , Embrião de Mamíferos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Análise Espacial , Propriedades de Superfície
19.
In Vitro Cell Dev Biol Anim ; 53(1): 83-91, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27573412

RESUMO

Human pluripotent stem cells (hPSCs) provide a good model system for studying human development and are expected as a source for both cell-based medical and pharmaceutical research application. However, stable maintenance of undifferentiated hPSCs is yet challenging, and thus routine characterization is required. Flow-cytometry is one of the popular quantitative characterization tools for hPSCs, but it has drawback of spatial information loss of the cells in the culture. Here, we have applied a two-dimensional imaging cytometry that examines undifferentiated state of hPSCs to analyze localization and morphological information of immunopositive cells in the culture. The whole images of cells in a culture vessel were acquired and analyzed by an image analyzer, IN Cell Analyzer 2000, and determined staining intensity of the cells with their positional information. We have compared the expression of five hPSC-markers in four hPSC lines using the two-dimensional imaging cytometry and flow cytometry. The results showed that immunopositive ratios analyzed by the imaging cytometry had good correlation with those by the flow cytometry. Furthermore, the imaging cytometry revealed spatially heterogenic expression of hPSC-markers in undifferentiated hPSCs. Imaging cytometry is capable of reflecting minute aberrance without losing spatial and morphological information of the cells. It would be a powerful, useful, and time-efficient tool for characterizing hPSC colonies.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Citometria de Fluxo/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos
20.
Mech Dev ; 122(5): 671-80, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15817224

RESUMO

Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P., Harris, W.A., Kintner, C.R., 1993. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659-671], although the mechanism by which this modulation occurs remains unknown. Here, we show that Notch signaling also delays the onset of LMC in whole embryos, as it did in animal caps. To better understand this effect and the mechanism of LMC itself, we investigated at which step of activin signal transduction pathway the Notch signaling act to affect the timing of the LMC. In our system, ALK4 (activin type I receptor) maintained the ability to phosphorylate the C-terminal region of smad2 upon activin A stimulus after the onset of LMC in both control- and Notch-activated animal caps. However, C-terminal-phosphorylated smad2 could bind to smad4 and accumulate in the nucleus only in Notch-activated animal caps. We conclude that LMC was induced because C-terminal-phosphorylated smad2 lost its ability to bind to smad4, and consequently could not accumulate in the nucleus. Notch signal activation restored the ability of C-terminal-phosphorylated smad2 to bind to smad4, resulting in a delay in the onset of LMC.


Assuntos
Ativinas/química , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica no Desenvolvimento , Subunidades beta de Inibinas/química , Proteínas de Membrana/fisiologia , Transdução de Sinais , Transativadores/química , Receptores de Ativinas/metabolismo , Receptores de Ativinas Tipo I , Ativinas/metabolismo , Animais , Western Blotting , Linhagem da Célula , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ectoderma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Microscopia de Fluorescência , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Notch , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad2 , Fatores de Tempo , Transativadores/metabolismo , Transcrição Gênica , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA