Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 22(1): 350, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115031

RESUMO

BACKGROUND: Elevated glycated hemoglobin (HbA1c) is associated with a higher burden of subclinical atherosclerosis (SA). However, the association with SA of earlier insulin resistance markers is poorly understood. The study assessed the association between the homeostatic model assessment of insulin resistance index (HOMA-IR) and SA in addition to the effect of cardiovascular risk factors (CVRFs) in individuals with normal HbA1c. METHODS: A cohort of 3,741 middle-aged individuals from the Progression of Early Subclinical Atherosclerosis (PESA) study with basal HbA1c < 6.0% (< 42 mmol/mol) and no known CV disease underwent extensive imaging (multiterritorial vascular ultrasound and coronary artery calcium score, CACS) to assess the presence, burden, and extent of SA. RESULTS: Individuals with higher HOMA-IR values had higher rates of CVRFs. HOMA-IR showed a direct association with the multiterritorial extent of SA and CACS (p < 0.001) and with global plaque volume measured by 3-dimensional vascular ultrasound (p < 0.001). After adjusting for key CVRFs and HbA1c, HOMA-IR values ≥ 3 were associated with both the multiterritorial extent of SA (odds ratio 1.41; 95%CI: 1.01 to 1.95, p = 0.041) and CACS > 0 (odds ratio 1.74; 95%CI: 1.20 to 2.54, p = 0.004), as compared with the HOMA-IR < 2 (the reference HOMA-IR category). In a stratified analysis, this association remained significant in individuals with a low-to-moderate SCORE2 risk estimate (75.6% of the cohort) but not in high-risk individuals. CONCLUSIONS: The use of HOMA-IR identified low-risk individuals with a higher burden of SA, after adjusting for the effects of key traditional CVRFs and HbA1c. HOMA-IR is a simple measure that could facilitate earlier implementation of primary CV prevention strategies in clinical practice.


Assuntos
Aterosclerose , Resistência à Insulina , Placa Aterosclerótica , Pessoa de Meia-Idade , Humanos , Hemoglobinas Glicadas , Fatores de Risco , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia
2.
Circ J ; 87(3): 394-400, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433749

RESUMO

Accumulating evidence suggests that conventional cardiovascular risk factors are incompletely predictive of cardiovascular disease, as a substantial risk remains even when these factors are apparently managed well. In this context, clonal hematopoiesis has emerged as a new and potent risk factor for atherosclerotic cardiovascular disease and other cardiometabolic conditions. Clonal hematopoiesis typically arises from somatic mutations that confer a competitive advantage to a mutant hematopoietic stem cell, leading to its clonal expansion in the stem cell population and its progeny of blood leukocytes. Human sequencing studies and experiments in mice suggest that clonal hematopoiesis, at least when driven by certain mutations, contributes to accelerated atherosclerosis development. However, the epidemiology, biology and clinical implications of this phenomenon remain incompletely understood. Here, we review the current understanding of the connection between clonal hematopoiesis and atherosclerosis, and highlight knowledge gaps in this area of research.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Animais , Camundongos , Fatores de Risco , Hematopoiese Clonal , Doenças Cardiovasculares/etiologia , Hematopoese/genética , Aterosclerose/genética , Fatores de Risco de Doenças Cardíacas , Mutação
3.
Eur Heart J ; 43(19): 1809-1828, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567559

RESUMO

AIMS: Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. METHODS AND RESULTS: Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). CONCLUSION: In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].


Assuntos
Aterosclerose , Síndrome Metabólica , Placa Aterosclerótica , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Medula Óssea , Feminino , Fluordesoxiglucose F18 , Humanos , Inflamação/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
4.
Circ Res ; 122(3): 523-532, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420212

RESUMO

Increasing evidence shows that conventional cardiovascular risk factors are incompletely predictive of cardiovascular disease, particularly in elderly individuals, suggesting that there may still be unidentified causal risk factors. Although the accumulation of somatic DNA mutations is a hallmark of aging, its relevance in cardiovascular disease or other age-related conditions has been, with the exception of cancer, largely unexplored. Here, we review recent clinical and preclinical studies that have identified acquired mutations in hematopoietic stem cells and subsequent clonal hematopoiesis as a new cardiovascular risk factor and a potential major driver of atherosclerosis. Understanding the mechanisms underlying the connection between somatic mutation-driven clonal hematopoiesis and cardiovascular disease will be highly relevant in the context of personalized medicine, as it may provide key information for the design of diagnostic, preventive, or therapeutic strategies tailored to the effects of specific somatic mutations.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/etiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Mutação , Idoso , Envelhecimento/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/terapia , Transplante de Medula Óssea , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Causalidade , Células Clonais/patologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/fisiologia , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Dioxigenases , Genes Neoplásicos , Estudos de Associação Genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Janus Quinase 2/deficiência , Janus Quinase 2/genética , Janus Quinase 2/fisiologia , Camundongos , Dinâmica Populacional , Medicina de Precisão , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Risco
6.
J Mol Cell Cardiol ; 116: 5-15, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29408196

RESUMO

Phosphorylation at serine 10 (S10) is the major posttranslational modification of the tumor suppressor p27, and is reduced in both human and mouse atherosclerosis. Moreover, a lack of p27-phospho-S10 in apolipoprotein E-null mice (apoE-/-) leads to increased high-fat diet-induced atherosclerosis associated with endothelial dysfunction and augmented leukocyte recruitment. In this study, we analyzed whether p27-phospho-S10 modulates additional endothelial functions and associated pathologies. Defective p27-phospho-S10 increases COX-2 activity in mouse aortic endothelial cells without affecting other key regulators of vascular reactivity, reduces endothelium-dependent dilation, and increases arterial contractility. Lack of p27-phospho-S10 also elevates aortic COX-2 expression and thromboxane A2 production, increases aortic lumen diameter, and aggravates angiotensin II-induced abdominal aortic aneurysm development in apoE-/- mice. All these abnormal responses linked to defective p27-phospho-S10 are blunted by pharmacological inhibition of COX-2. These results demonstrate that defective p27-phospho-S10 modifies endothelial behavior and promotes aneurysm formation via COX-2 activation.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/fisiopatologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fosfosserina/metabolismo , Acetilcolina/farmacologia , Angiotensina II , Animais , Aorta/patologia , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática , Camundongos Endogâmicos C57BL , Fosforilação , Tromboxanos/metabolismo , Vasodilatação , Remodelação Ventricular/efeitos dos fármacos
7.
Circ Res ; 118(11): 1786-807, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230642

RESUMO

Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Microambiente Celular , Obesidade/metabolismo , Adipocinas/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Humanos , Obesidade/complicações , Obesidade/patologia
8.
J Biol Chem ; 291(6): 2566-75, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26631720

RESUMO

Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.


Assuntos
Proteínas de Membrana/metabolismo , Isquemia Miocárdica/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocardite/genética , Miocardite/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
9.
Arterioscler Thromb Vasc Biol ; 36(3): 561-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26800561

RESUMO

OBJECTIVE: Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS: We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS: Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.


Assuntos
Artéria Braquial/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Vasodilatação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Adulto , Idoso , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/farmacologia , Vasodilatação/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a
10.
Vasc Med ; 21(6): 489-496, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27688298

RESUMO

Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease.


Assuntos
Adiposidade , Arteríolas/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Insulina/farmacologia , Gordura Intra-Abdominal/irrigação sanguínea , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Obesidade/enzimologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Adolescente , Adulto , Arteríolas/enzimologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/fisiopatologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Adulto Jovem
11.
J Biol Chem ; 289(12): 8633-44, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24482236

RESUMO

Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.


Assuntos
Glutarredoxinas/genética , Membro Posterior/irrigação sanguínea , Isquemia/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Glutarredoxinas/metabolismo , Membro Posterior/fisiopatologia , Humanos , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt-5a
12.
Hamostaseologie ; 44(1): 13-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38417801

RESUMO

Acquired mutations that lead to clonal hematopoiesis have emerged as a new and potent risk factor for atherosclerotic cardiovascular disease and other cardiovascular conditions. Human sequencing studies and experiments in mouse models provide compelling evidence supporting that this condition, particularly when driven by specific mutated genes, contributes to the development of atherosclerosis by exacerbating inflammatory responses. The insights gained from these studies are paving the way for the development of new personalized preventive care strategies against cardiovascular disease. Furthermore, available evidence also suggests a potential relevance of these mutation in the context of thrombosis, an area requiring thorough investigation. In this review, we provide an overview of our current understanding of this emerging cardiovascular risk factor, focusing on its relationship to atherosclerosis and thrombosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Trombose , Animais , Camundongos , Humanos , Doenças Cardiovasculares/complicações , Fatores de Risco , Hematopoiese Clonal , Hematopoese/genética , Aterosclerose/genética , Trombose/genética , Trombose/complicações , Fatores de Risco de Doenças Cardíacas , Mutação
13.
J Am Coll Cardiol ; 83(21): 2112-2127, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38777513

RESUMO

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide and challenges the capacity of health care systems globally. Atherosclerosis is the underlying pathophysiological entity in two-thirds of patients with CVD. When considering that atherosclerosis develops over decades, there is potentially great opportunity for prevention of associated events such as myocardial infarction and stroke. Subclinical atherosclerosis has been identified in its early stages in young individuals; however, there is no consensus on how to prevent progression to symptomatic disease. Given the growing burden of CVD, a paradigm shift is required-moving from late management of atherosclerotic CVD to earlier detection during the subclinical phase with the goal of potential cure or prevention of events. Studies must focus on how precision medicine using imaging and circulating biomarkers may identify atherosclerosis earlier and determine whether such a paradigm shift would lead to overall cost savings for global health.


Assuntos
Aterosclerose , Diagnóstico Precoce , Medicina de Precisão , Humanos , Aterosclerose/diagnóstico , Medicina de Precisão/métodos , Biomarcadores/sangue
15.
Clin Investig Arterioscler ; 35(1): 35-41, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34879980

RESUMO

Despite current standards of care, a considerable risk of atherosclerotic cardiovascular disease remains in both primary and secondary prevention. In this setting, clonal hematopoiesis driven by somatic mutations has recently emerged as a relatively common, potent and independent risk factor for atherosclerotic cardiovascular disease and other cardiovascular conditions. Experimental studies in mice suggest that mutations in TET2 and JAK2, which are among the most common in clonal hematopoiesis, increase inflammation and are causally connected to accelerated atherosclerosis development, which may explain the link between clonal hematopoiesis and increased cardiovascular risk. In this review, we provide an overview of our current understanding of this emerging cardiovascular risk factor.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/genética , Aterosclerose/genética , Fatores de Risco de Doenças Cardíacas , Inflamação , Mutação
16.
Geroscience ; 45(2): 1231-1236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752705

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.


Assuntos
Doenças Cardiovasculares , Progéria , Humanos , Pessoa de Meia-Idade , Idoso , Adolescente , Progéria/genética , Hematopoiese Clonal , Lamina Tipo A/genética , Envelhecimento/genética , Envelhecimento/metabolismo
17.
J Am Coll Cardiol ; 82(22): 2069-2083, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37993199

RESUMO

BACKGROUND: Atherosclerosis is a systemic disease that frequently begins early in life. However, knowledge about the temporal disease dynamics (ie, progression or regression) of human subclinical atherosclerosis and their determinants is scarce. OBJECTIVES: This study sought to investigate early subclinical atherosclerosis disease dynamics within a cohort of middle-aged, asymptomatic individuals by using multiterritorial 3-dimensional vascular ultrasound (3DVUS) imaging. METHODS: A total of 3,471 participants from the PESA (Progression of Early Subclinical Atherosclerosis) cohort study (baseline age 40-55 years; 36% female) underwent 3 serial 3DVUS imaging assessments of peripheral arteries at 3-year intervals. Subclinical atherosclerosis was quantified as global plaque volume (mm3) (bilateral carotid and femoral plaque burden). Multivariable logistic regression models for progression and regression were developed using stepwise forward variable selection. RESULTS: Baseline to 6-year subclinical atherosclerosis progression occurred in 32.7% of the cohort (17.5% presenting with incident disease and 15.2% progressing from prevalent disease at enrollment). Regression was observed in 8.0% of those patients with baseline disease. The effects of higher low-density lipoprotein cholesterol (LDL-C) and elevated systolic blood pressure (SBP) on 6-year subclinical atherosclerosis progression risk were more pronounced among participants in the youngest age stratum (Pinteraction = 0.04 and 0.02, respectively). CONCLUSIONS: Over 6 years, subclinical atherosclerosis progressed in one-third of middle-age asymptomatic subjects. Atherosclerosis regression is possible in early stages of the disease. The impact of LDL-C and SBP on subclinical atherosclerosis progression was more pronounced in younger participants, a finding suggesting that the prevention of atherosclerosis and its progression could be enhanced by tighter risk factor control at younger ages, with a likely long-term impact on reducing the risk of clinical events. (Progression of Early Subclinical Atherosclerosis [PESA; also PESA-CNIC-Santander]; NCT01410318).


Assuntos
Aterosclerose , Placa Aterosclerótica , Pessoa de Meia-Idade , Humanos , Feminino , Adulto , Masculino , Estudos de Coortes , LDL-Colesterol , Progressão da Doença , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Artérias Carótidas , Fatores de Risco
18.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36949957

RESUMO

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

19.
JACC CardioOncol ; 5(6): 715-731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205010

RESUMO

Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.

20.
Arterioscler Thromb Vasc Biol ; 31(11): 2455-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21885849

RESUMO

OBJECTIVE: Genetic ablation of the growth suppressor p27(Kip1) (p27) in the mouse aggravates atherosclerosis coinciding with enhanced arterial cell proliferation. However, it is unknown whether molecular mechanisms that limit p27's protective function contribute to atherosclerosis development and whether p27 exerts proliferation-independent activities in the arterial wall. This study aims to provide insight into both questions by investigating the role in atherosclerosis of p27 phosphorylation at serine 10 (p27-phospho-Ser10), a major posttranslational modification of this protein. METHODS AND RESULTS: Immunoblotting studies revealed a marked reduction in p27-phospho-Ser10 in atherosclerotic arteries from apolipoprotein E-null mice, and expression of the nonphosphorylatable mutant p27Ser10Ala, either global or restricted to bone marrow, accelerated atherosclerosis. p27Ser10Ala expression did not affect cell proliferation in early and advanced atheroma but activated RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) signaling and promoted macrophage foam cell formation in a ROCK-dependent manner. Supporting the clinical relevance of these findings, human atherosclerotic coronary arteries exhibited a prominent reduction in p27-phospho-Ser10 and increased ezrin/radixin/moesin protein phosphorylation, a marker of RhoA/ROCK activation. CONCLUSION: Scarce phosphorylation of p27 at Ser10 is a hallmark of human and mouse atherosclerosis and promotes disease progression in mice. This proatherogenic effect is mediated by a proliferation-independent mechanism that involves augmented foam cell formation owing to increased RhoA/ROCK activity. These findings unveil a new atheroprotective action of p27 and identify p27-phospho-Ser10 as an attractive target for the treatment of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Células Espumosas/patologia , Serina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artérias/metabolismo , Artérias/patologia , Estudos de Casos e Controles , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transdução de Sinais , Proteínas rho de Ligação ao GTP , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA