Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311839

RESUMO

BACKGROUND/AIM: The impact of exercise on pediatric tumor biology is essentially unknown. We investigated the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). METHODS: Tumor samples of 14 male mice (aged 6-8 weeks) that were randomly allocated into an exercise (5-week combined aerobic and resistance training) or nonexercise control group (6 and 8 mice per group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. RESULTS: Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, compared to controls [false discovery rate (FDR)<0.05], which were enriched in metabolic pathways, aminoacid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling pathway (FDR<0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR<0.01). Categories with lower abundance were involved in energy production while those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. CONCLUSION: Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying potential effects of exercise in HR-NB.

2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731880

RESUMO

Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Animais , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Microbioma Gastrointestinal , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo Energético
3.
J Cell Physiol ; 236(1): 132-145, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32468615

RESUMO

Pericardial adipose tissue (PAT), a visceral fat depot enveloping the heart, is an active endocrine organ and a source of free fatty acids and inflammatory cytokines. As in other fat adult tissues, PAT contains a population of adipose stem cells; however, whether these cells and/or their environment play a role in physiopathology is unknown. We analyzed several stem cell-related properties of pericardial adipose stem cells (PSCs) isolated from obese and ex-obese mice. We also performed RNA-sequencing to profile the transcriptional landscape of PSCs isolated from the different diet regimens. Finally, we tested whether these alterations impacted on the properties of cardiac mesoangioblasts isolated from the same mice. We found functional differences between PSCs depending on their source: specifically, PSCs from obese PSC (oPSC) and ex-obese PSC (dPSC) mice showed alterations in apoptosis and migratory capacity when compared with lean, control PSCs, with increased apoptosis in oPSCs and blunted migratory capacity in oPSCs and dPSCs. This was accompanied by different gene expression profiles across the cell types, where we identified some genes altered in obese conditions, such as BMP endothelial cell precursor-derived regulator (BMPER), an important regulator of BMP-related signaling pathways for endothelial cell function. The importance of BMPER in PSCs was confirmed by loss- and gain-of-function studies. Finally, we found an altered production of BMPER and some important chemokines in cardiac mesoangioblasts in obese conditions. Our findings point to BMPER as a potential new regulator of PSC function and suggest that its dysregulation could be associated with obesity and may impact on cardiac cells.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pericárdio/metabolismo , Células-Tronco/metabolismo , Regulação para Cima/genética , Tecido Adiposo/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Gordura Intra-Abdominal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos/genética , Camundongos Obesos/metabolismo , Transdução de Sinais/genética
4.
Int J Obes (Lond) ; 44(4): 908-919, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31548573

RESUMO

BACKGROUND: The role of adipose tissue in the pathophysiology of cardiovascular disease remains a major subject of research. The objective of the present study was to dissect the molecular mechanisms that regulate the survival and differentiation of cardiac cells in an obese environment. MATERIAL AND METHODS: We isolated murine/human cardiac cells from adult hearts of control and obese mice/subjects and analyzed the communication between cardiac cells and adipocytes in vitro, as well as the effects on their main functions such as survival and differentiation. RESULTS: We found that the presence of visceral or subcutaneous adipocytes in the environment of cardiomyocytes or cardiac precursors provoked apoptosis or blocked differentiation, respectively, and these effects were mediated by secreted adipokines. Remarkably, cardiac precursors changed their fate and differentiated into mature adipocytes, contributing to the overall increase in adipose cell content. Inhibiting the adipokines TNF-α, visfatin, or HMGB1 could block the deleterious effects of adipokines on cardiac cells. CONCLUSIONS: Our findings demonstrate that mouse and human visceral adipose tissue contributes negatively to the homeostasis and regeneration of the heart. Moreover, our results suggest that blocking the action of certain adipokines might enhance cardiac differentiation and survival.


Assuntos
Adipocinas , Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Adipocinas/metabolismo , Adipocinas/farmacologia , Animais , Células Cultivadas , Feminino , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Exerc Immunol Rev ; 26: 100-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32139351

RESUMO

BACKGROUND: Lung cancer has the highest incidence and mortality rate in the world. One of the most promising new cancer therapies in recent years is immunotherapy, which is based on the blockade of immune checkpoints such as programmed cell death protein 1 (PD-1). Exercise training is beneficial to maintain and improve the quality of life of cancer patients, and it might also modulate the anti-tumoral efficiency of some chemotherapeutic agents. However, the potential of exercise combined with immunotherapy as a cancer therapy remains to be elucidated. Here, we examined the effects of exercise on tumor growth and its possible adjuvant effects when combined with anti-PD-1 immunotherapy (nivolumab) in a patient derived xenograft (PDX) model of non-small-cell lung carcinoma (NSCLC). METHODS: We generated a PDX model using NOD-SCID gamma mice with subcutaneous grafts from tumor tissue of a patient with NSCLC. Animals were randomly assigned to one of four groups: non-exercise + isotype control (n=5), exercise + isotype control (n=5), non-exercise + nivolumab (n=6) or exercise + nivolumab (n=6). The animals undertook an 8- week moderate-intensity training regimen (treadmill aerobic exercise and strength training). Immunotherapy (nivolumab) or an isotype control was administered 2 days/week, for 6 weeks. Several tumor growth and microenvironment parameters were measured after the intervention. RESULTS: Improvements in aerobic capacity and muscle strength (p=0.027 and p=0.005) were noted in exercised animals. Exercise alone reduced the tumor growth rate with respect to non-exercised mice (p=0.050). The double intervention (exercise + nivolumab) increased tumor necrosis and reduced apoptosis with respect to controls (p=0.026; p=0.030). All interventions achieved a reduction in proliferation compared with the control group (p=0.015, p=0.011, and p=0.011). Exercise alone increased myeloid tumor infiltrates (mostly neutrophils) with respect to the nivolumab only group (p=0.018). Finally, Vegf-a expression was higher in the nivolumab groups (in combination or not with exercise) than in exercise + isotype control group (p=0.045 and p=0.047, respectively). No other significant effects were found. CONCLUSIONS: Our results would suggest that aerobic and strength training should be studied as an adjuvant to cancer immunotherapy treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia , Neoplasias Pulmonares/terapia , Nivolumabe/uso terapêutico , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Qualidade de Vida , Distribuição Aleatória , Microambiente Tumoral
6.
J Cell Mol Med ; 22(2): 746-754, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214727

RESUMO

Cell migration is an essential process throughout the life of vertebrates, beginning during embryonic development and continuing throughout adulthood. Stem cells have an inherent ability to migrate, that is as important as their capacity for self-renewal and differentiation, enabling them to maintain tissue homoeostasis and mediate repair and regeneration. Adult stem cells reside in specific tissue niches, where they remain in a quiescent state until called upon and activated by tissue environmental signals. Cell migration is a highly regulated process that involves the integration of intrinsic signals from the niche and extrinsic factors. Studies using three-dimensional in vitro models have revealed the astonishing plasticity of cells in terms of the migration modes employed in response to changes in the microenvironment. These same properties can, however, be subverted during the development of some pathologies such as cancer. In this review, we describe the response of adult stem cells to migratory stimuli and the mechanisms by which they sense and transduce intracellular signals involved in migratory processes. Understanding the molecular events underlying migration may help develop therapeutic strategies for regenerative medicine and to treat diseases with a cell migration component.


Assuntos
Células-Tronco Adultas/citologia , Movimento Celular , Animais , Humanos , Modelos Biológicos
7.
J Physiol ; 596(6): 1035-1061, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29315579

RESUMO

KEY POINTS: Although they are unable to utilize muscle glycogen, McArdle mice adapt favourably to an individualized moderate-intensity endurance exercise training regime. Yet, they fail to reach the performance capacity of healthy mice with normal glycogen availability. There is a remarkable difference in the protein networks involved in muscle tissue adaptations to endurance exercise training in mice with and without glycogen availability. Indeed, endurance exercise training promoted the expression of only three proteins common to both McArdle and wild-type mice: LIMCH1, PARP1 and TIGD4. In turn, trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). ABSTRACT: McArdle's disease is an inborn disorder of skeletal muscle glycogen metabolism that results in blockade of glycogen breakdown due to mutations in the myophosphorylase gene. We recently developed a mouse model carrying the homozygous p.R50X common human mutation (McArdle mouse), facilitating the study of how glycogen availability affects muscle molecular adaptations to endurance exercise training. Using quantitative differential analysis by liquid chromatography with tandem mass spectrometry, we analysed the quadriceps muscle proteome of 16-week-old McArdle (n = 5) and wild-type (WT) (n = 4) mice previously subjected to 8 weeks' moderate-intensity treadmill training or to an equivalent control (no training) period. Protein networks enriched within the differentially expressed proteins with training in WT and McArdle mice were assessed by hypergeometric enrichment analysis. Whereas endurance exercise training improved the estimated maximal aerobic capacity of both WT and McArdle mice as compared with controls, it was ∼50% lower than normal in McArdle mice before and after training. We found a remarkable difference in the protein networks involved in muscle tissue adaptations induced by endurance exercise training with and without glycogen availability, and training induced the expression of only three proteins common to McArdle and WT mice: LIM and calponin homology domains-containing protein 1 (LIMCH1), poly (ADP-ribose) polymerase 1 (PARP1 - although the training effect was more marked in McArdle mice), and tigger transposable element derived 4 (TIGD4). Trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). Through an in-depth proteomic analysis, we provide mechanistic insight into how glycogen availability affects muscle protein signalling adaptations to endurance exercise training.


Assuntos
Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Glicogênio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteômica/métodos , Animais , Tolerância ao Exercício , Doença de Depósito de Glicogênio Tipo V/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
8.
Cell Physiol Biochem ; 46(5): 1999-2016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723858

RESUMO

The stem cell field has grown very rapidly during the last decade, offering the promise of innovative therapies to treat disease. Different stem cell populations have been isolated from various human adult tissues, mainly from bone marrow and adipose tissue, but many other body tissues harbor a stem cell population. Adult tissue stem cells are invariably found in discrete microenvironments termed niches, where they play key roles in tissue homeostasis by enabling lifelong optimization of organ form and function. Some diseases are known to strike at the stem cell population, through alterations in their specific microenvironments, making them non-viable. Furthermore, it has been shown that a transformed stem cell population could prompt the development of certain cancers. This review focuses on the potential negative aspects of a range of diseases on the activity of stem cells and how their potential use in cell therapies may be affected.


Assuntos
Nicho de Células-Tronco , Células-Tronco/patologia , Envelhecimento , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
Biochem J ; 473(14): 2187-203, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208167

RESUMO

Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms that are still poorly understood. In the present study we used a multiplatform [LC/MS, GC/MS and capillary electrophoresis/MS (CE/MS)], metabolomics, untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obesity-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium), from obesity- and non-obesity-derived ASCs of humans or mice, were characterized to provide valuable information. Metabolites associated with glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and the polyol pathway were increased in the footprint of obesity-derived human ASCs, indicating alterations in carbohydrate metabolism, whereas, from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs' metabolome were provided that enhance our understanding of the processes underlying ASCs' stemness capacity and its relationship with obesity, in different cell models.


Assuntos
Tecido Adiposo/citologia , Metabolômica/métodos , Obesidade/metabolismo , Células-Tronco/citologia , Animais , Células Cultivadas , Cromatografia Líquida , Ciclo do Ácido Cítrico/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/fisiologia , Humanos , Camundongos , Células-Tronco/metabolismo
10.
J Physiol ; 594(12): 3187-207, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926488

RESUMO

The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.


Assuntos
Tecido Adiposo , Envelhecimento , Obesidade , Animais , Humanos , Inflamação
11.
Nat Cell Biol ; 9(3): 255-67, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293855

RESUMO

Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.


Assuntos
Células-Tronco Adultas/citologia , Músculo Esquelético/citologia , Pericitos/citologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Adolescente , Adulto , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Idoso , Animais , Antígenos CD/análise , Técnicas de Cultura de Células/métodos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/genética , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/cirurgia , Pericitos/química , Pericitos/transplante , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco/métodos , Resultado do Tratamento
13.
Nat Rev Immunol ; 24(4): 282-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37794239

RESUMO

Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.


Assuntos
Exercício Físico , Neoplasias , Animais , Humanos , Sistema Imunitário , Neoplasias/terapia
14.
PLoS One ; 19(5): e0304713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820477

RESUMO

Argentatins are secondary metabolites synthesized by guayule (Parthenium argentatum A. Gray) with numerous potential medical applications. In addition to inhibiting insect growth, they are endowed with several pharmacological properties including antimicrobial and antitumorigenic activity. However, their potential as immunomodulators remains unexplored. The aim of the present study was to investigate whether argentatins can modulate the function of the immune system. Human mesenchymal stem cells were treated with argentatins and the production of several anti- and proinflammatory cytokines was evaluated. The effect of argentatins on the polarization of CD4+ T-lymphocytes and macrophages was also assessed. Results demonstrated that argentatins can modulate the production of proinflammatory cytokines and the polarization of cellular phenotypes, including Th2 lymphocytes and M1 macrophages. These findings suggest that argentatins are promising therapeutic agents in autoimmune or allergic diseases, and open new perspectives for the investigation of argentatins in immune response and in the development of more targeted and effective immunomodulatory therapies.


Assuntos
Citocinas , Humanos , Citocinas/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fatores Imunológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos
15.
Clocks Sleep ; 6(3): 433-445, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39189196

RESUMO

BACKGROUND: Rooms illuminated by "black light" (<400 nm wavelength) has become popular, but there is not enough scientific evidence to support its implementation. This study aims to assess the effects of violet light (392 nm) on the circadian rest-activity rhythm and the visual system through animal experimentation. MATERIALS AND RESULTS: Five groups of four mice were exposed to different white light, violet light, and dark periods, and their circadian rhythm was analyzed by measuring the circadian period using rest-activity cycles. Electroretinographic recordings and structural analysis of the retina were also performed on experimental animals. RESULTS: Our study demonstrates that mice present normal circadian activity during exposure to violet light, taking rest not only under white light but under violet lighting periods. However, mice suffered a decrease in electrical retinal response after exposure to violet light as measured by electroretinography. Nevertheless, no structural changes were observed in the retinas of the animals under different lighting conditions. CONCLUSIONS: Violet light elicits circadian rest-activity rhythm in mice but alters their visual function, although no structural changes are observed after short periods of violet light exposure.

16.
Med Sci Sports Exerc ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160758

RESUMO

INTRODUCTION: Whether cardiac impairment can be fully discarded in McArdle disease-the paradigm of 'exercise intolerance', caused by inherited deficiency of the skeletal muscle-specific glycogen phosphorylase isoform ('myophosphorylase')-remains to be determined. METHODS: Eight patients with McArdle disease and seven age/sex-matched controls performed a 15-minute moderate, constant-load cycle-ergometer exercise bout followed by a maximal ramp test. Electrocardiographic and two-dimensional transthoracic (for cardiac dimension's assessment) and speckle tracking [for left-ventricle global longitudinal (GLS) assessments] echocardiographic evaluations were performed at baseline. Electrocardiographic and GLS assessments were also performed during constant-load exercise and immediately upon maximal exertion. Four human heart biopsies were obtained in individuals without McArdle disease, and in-depth histological/molecular analyses were performed in McArdle and wild-type mouse hearts. RESULTS: Exercise intolerance was confirmed in patients ('second wind' during constant-load exercise, -55% peak power output vs controls). As opposed to controls, patients showed a decrease in GLS during constant-load exercise, especially upon second wind occurrence, but with no other between-group difference in cardiac structure/function. Human cardiac biopsies showed that all three glycogen phosphorylase-myophosphorylase, but also liver and especially brain-isoforms are expressed in the normal adult heart, thereby theoretically compensating for eventual myophosphorylase deficiency. No overall histological (including glycogen depots), cytoskeleton, metabolic or mitochondrial (morphology/network/distribution) differences were found between McArdle and wild-type mouse hearts, except for lower levels of pyruvate kinase M2 and translocase of outer membrane 20 kDa subunit in the former. CONCLUSIONS: This study provides preliminary evidence that cardiac structure and function seem to be preserved in patients with McArdle disease. However, the role for an impaired cardiac contractility associated with the second wind phenomenon should be further explored.

17.
Stem Cells ; 29(7): 1064-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21544900

RESUMO

An understanding of cardiac progenitor cell biology would facilitate their therapeutic potential for cardiomyocyte restoration and functional heart repair. Our previous studies identified cardiac mesoangioblasts as precommitted progenitor cells from the postnatal heart, which can be expanded in vitro and efficiently differentiated in vitro and in vivo to contribute new myocardium after injury.Based on their proliferation potential in culture, we show here that two populations of mesoangioblasts can be isolated from explant cultures of mouse and human heart.Although both populations express similar surface markers, together with a panel of instructive cardiac transcription factors, they differ significantly in their cellular content of mitochondria. Slow dividing (SD) cells, containing many mitochondria, can be efficiently differentiated with 5-azacytidine (5-aza) to generate cardiomyocytes expressing mature structural markers. In contrast, fast dividing (FD) mesoangioblasts, which contain decreased quantities of mitochondria, do not respond to 5-aza treatment.Notably, increasing mitochondrial numbers using pharmacological nitric oxide (NO) donors reverses the differentiation block in FD mesoangioblasts and leads to a progressive maturation to cardiomyocytes; conversely decreasing mitochondrial content, using respiratory chain inhibitors and chloramphenicol, perturbs cardiomyocyte differentiation in SD populations. Furthermore, isolated cardiac mesoangioblasts from aged mouse and human hearts are found to be almost exclusively mitochondria low FD populations, which are permissive for cardiomyocyte differentiation only after NO treatment. Taken together,this study illustrates a key role for mitochondria in cardiac mesoangioblast differentiation and raises the interesting possibility that treatments, which increase cellular mitochondrial content, may have utility for cardiac stem cell therapy.


Assuntos
Mitocôndrias/fisiologia , Miocárdio/citologia , Animais , Azacitidina/farmacologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Miócitos Cardíacos/citologia
18.
J Cell Biol ; 179(1): 33-40, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17923528

RESUMO

Tissue damage is usually followed by healing, as both differentiated and stem cells migrate to replace dead or damaged cells. Mesoangioblasts (vessel-associated stem cells that can repair muscles) and fibroblasts migrate toward soluble factors released by damaged tissue. Two such factors are high mobility group box 1 (HMGB1), a nuclear protein that is released by cells undergoing unscheduled death (necrosis) but not by apoptotic cells, and stromal derived factor (SDF)-1/CXCL12. We find that HMGB1 activates the canonical nuclear factor kappaB (NF-kappaB) pathway via extracellular signal-regulated kinase phosphorylation. NF-kappaB signaling is necessary for chemotaxis toward HMGB1 and SDF-1/CXCL12, but not toward growth factor platelet-derived growth factor, formyl-met-leu-phe (a peptide that mimics bacterial invasion), or the archetypal NF-kappaB-activating signal tumor necrosis factor alpha. In dystrophic mice, mesoangioblasts injected into the general circulation ingress inefficiently into muscles if their NF-kappaB signaling pathway is disabled. These findings suggest that NF-kappaB signaling controls tissue regeneration in addition to early events in inflammation.


Assuntos
Quimiotaxia/fisiologia , Proteína HMGB1/metabolismo , NF-kappa B/fisiologia , Transdução de Sinais , Animais , Linhagem Celular , Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Proteínas de Fluorescência Verde/análise , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Necrose , Fosforilação , Proteínas Recombinantes de Fusão/análise
19.
Circ Res ; 106(7): 1290-302, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20185800

RESUMO

RATIONALE: Complementation of pluripotency genes may improve adult stem cell functions. OBJECTIVES: Here we show that clonally expandable, telomerase expressing progenitor cells can be isolated from peripheral blood of children. The surface marker profile of the clonally expanded cells is distinct from hematopoietic or mesenchymal stromal cells, and resembles that of embryonic multipotent mesoangioblasts. Cell numbers and proliferative capacity correlated with donor age. Isolated circulating mesoangioblasts (cMABs) express the pluripotency markers Klf4, c-Myc, as well as low levels of Oct3/4, but lack Sox2. Therefore, we tested whether overexpression of Sox2 enhances pluripotency and facilitates differentiation of cMABs in cardiovascular lineages. METHODS AND RESULTS: Lentiviral transduction of Sox2 (Sox-MABs) enhanced the capacity of cMABs to differentiate into endothelial cells and cardiomyocytes in vitro. Furthermore, the number of smooth muscle actin positive cells was higher in Sox-MABs. In addition, pluripotency of Sox-MABs was shown by demonstrating the generation of endodermal and ectodermal progenies. To test whether Sox-MABs may exhibit improved therapeutic potential, we injected Sox-MABs into nude mice after acute myocardial infarction. Four weeks after cell therapy with Sox-MABs, cardiac function was significantly improved compared to mice treated with control cMABs. Furthermore, cell therapy with Sox-MABs resulted in increased number of differentiated cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. CONCLUSIONS: The complementation of Sox2 in Oct3/4-, Klf4-, and c-Myc-expressing cMABs enhanced the differentiation into all 3 cardiovascular lineages and improved the functional recovery after acute myocardial infarction.


Assuntos
Isquemia/cirurgia , Leucócitos Mononucleares/transplante , Músculo Esquelético/irrigação sanguínea , Infarto do Miocárdio/cirurgia , Transplante de Células-Tronco de Sangue Periférico , Células-Tronco Pluripotentes/transplante , Regeneração , Fatores de Transcrição SOXB1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos/genética , Membro Posterior , Humanos , Lactente , Recém-Nascido , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Lentivirus/genética , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Tempo , Transdução Genética , Adulto Jovem
20.
Nature ; 444(7119): 574-9, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17108972

RESUMO

Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients.


Assuntos
Células-Tronco Adultas/transplante , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Transplante de Células-Tronco , Células-Tronco Adultas/imunologia , Animais , Terapia Combinada , Creatina Quinase/sangue , Cães , Distrofina/biossíntese , Distrofina/genética , Distrofina/imunologia , Terapia Genética , Humanos , Masculino , Células Musculares , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transplante Autólogo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA