Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Med ; 202(1): 33-45, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15983066

RESUMO

The role of central tolerance induction has recently been revised after the discovery of promiscuous expression of tissue-restricted self-antigens in the thymus. The extent of tissue representation afforded by this mechanism and its cellular and molecular regulation are barely defined. Here we show that medullary thymic epithelial cells (mTECs) are specialized to express a highly diverse set of genes representing essentially all tissues of the body. Most, but not all, of these genes are induced in functionally mature CD80(hi) mTECs. Although the autoimmune regulator (Aire) is responsible for inducing a large portion of this gene pool, numerous tissue-restricted genes are also up-regulated in mature mTECs in the absence of Aire. Promiscuously expressed genes tend to colocalize in clusters in the genome. Analysis of a particular gene locus revealed expression of clustered genes to be contiguous within such a cluster and to encompass both Aire-dependent and -independent genes. A role for epigenetic regulation is furthermore implied by the selective loss of imprinting of the insulin-like growth factor 2 gene in mTECs. Our data document a remarkable cellular and molecular specialization of the thymic stroma in order to mimic the transcriptome of multiple peripheral tissues and, thus, maximize the scope of central self-tolerance.


Assuntos
Timo/imunologia , Animais , Autoantígenos , Antígeno B7-1/metabolismo , Sequência de Bases , Diferenciação Celular , DNA Complementar/genética , Células Epiteliais/imunologia , Feminino , Regulação da Expressão Gênica , Impressão Genômica , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Muridae , Gravidez , Tolerância a Antígenos Próprios , Timo/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteína AIRE
2.
Eur J Immunol ; 37(12): 3363-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18000951

RESUMO

Thymic epithelial cells (TEC) form the structural and functional microenvironment necessary for the establishment and quality control of the T cell repertoire. In addition, they provide an ectopic source of numerous tissue-restricted antigens (TRA), a feature called promiscuous gene expression (pGE). How the regulation of pGE is related to the cell biology of TEC subset(s), e.g. their turnover and developmental interrelationship is still poorly understood. The observation that pGE is foremost a property of phenotypically and functionally mature medullary TEC (mTEC) implies that the full implementation of pGE is contingent on mTEC differentiation. Here, we show that the emergence of TEC subsets and pGE is tightly correlated during ontogeny and we provide evidence that mature CD80pos mTEC develop from an immature CD80neg subset. This differentiation step proceeds continuously in the postnatal thymus. While mature mTEC turnover in 2 to 3 weeks, immature mTEC encompass a smaller cycling and a larger non-cycling pool. The latter might serve as a reservoir of committed precursors, which sustain this renewal process. Our data document that mTEC represent a highly dynamic cell population, and they imply that the availability and display of TRA in the thymus undergoes a perpetual temporal and spatial reorganization.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Timo/embriologia , Animais , Autoantígenos/imunologia , Antígeno B7-1/análise , Deleção Clonal , Células Epiteliais/classificação , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Idade Gestacional , Antígenos de Histocompatibilidade Classe II/análise , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Técnicas de Cultura de Órgãos , Gravidez , Timo/citologia , Timo/ultraestrutura
3.
J Bacteriol ; 185(24): 7092-102, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645268

RESUMO

Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion (TTS) system which translocates bacterial effector proteins into the plant cell. Previous transcriptome analysis identified a genome-wide regulon of putative virulence genes that are coexpressed with the TTS system. In this study, we characterized two of these genes, xopC and xopJ. Both genes encode Xanthomonas outer proteins (Xops) that were shown to be secreted by the TTS system. In addition, type III-dependent translocation of both proteins into the plant cell was demonstrated using the AvrBs3 effector domain as a reporter. XopJ belongs to the AvrRxv/YopJ family of effector proteins from plant and animal pathogenic bacteria. By contrast, XopC does not share significant homology to proteins in the database. Sequence analysis revealed that the xopC locus contains several features that are reminiscent of pathogenicity islands. Interestingly, the xopC region is flanked by 62-bp inverted repeats that are also associated with members of the Xanthomonas avrBs3 effector family. Besides xopC, a second gene of the locus, designated hpaJ, was shown to be coexpressed with the TTS system. hpaJ encodes a protein with similarity to transglycosylases and to the Pseudomonas syringae pv. maculicola protein HopPmaG. HpaJ secretion and translocation by the X. campestris pv. vesicatoria TTS system was not detectable, which is consistent with its predicted Sec signal and a putative function as transglycosylase in the bacterial periplasm.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sequência de Bases , Proteínas de Ligação a DNA/fisiologia , Dados de Sequência Molecular , Piperaceae/microbiologia , Doenças das Plantas/microbiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Virulência , Xanthomonas campestris/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA