Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(15): 150201, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897784

RESUMO

We present a general class of entanglement criteria for continuous variable systems. Our criteria are based on the Husimi Q distribution and allow for optimization over the set of all concave functions rendering them extremely general and versatile. We show that several entropic criteria and second moment criteria are obtained as special cases. Our criteria reveal entanglement of families of states undetected by any commonly used criteria and provide clear advantages under typical experimental constraints such as finite detector resolution and measurement statistics.

2.
Entropy (Basel) ; 25(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761552

RESUMO

This paper introduces assignment flows for density matrices as state spaces for representation and analysis of data associated with vertices of an underlying weighted graph. Determining an assignment flow by geometric integration of the defining dynamical system causes an interaction of the non-commuting states across the graph, and the assignment of a pure (rank-one) state to each vertex after convergence. Adopting the Riemannian-Bogoliubov-Kubo-Mori metric from information geometry leads to closed-form local expressions that can be computed efficiently and implemented in a fine-grained parallel manner. Restriction to the submanifold of commuting density matrices recovers the assignment flows for categorical probability distributions, which merely assign labels from a finite set to each data point. As shown for these flows in our prior work, the novel class of quantum state assignment flows can also be characterized as Riemannian gradient flows with respect to a non-local, non-convex potential after proper reparameterization and under mild conditions on the underlying weight function. This weight function generates the parameters of the layers of a neural network corresponding to and generated by each step of the geometric integration scheme. Numerical results indicate and illustrate the potential of the novel approach for data representation and analysis, including the representation of correlations of data across the graph by entanglement and tensorization.

3.
Phys Rev Lett ; 128(2): 020402, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089742

RESUMO

A prerequisite for the comprehensive understanding of many-body quantum systems is a characterization in terms of their entanglement structure. The experimental detection of entanglement in spatially extended many-body systems describable by quantum fields still presents a major challenge. We develop a general scheme for certifying entanglement and demonstrate it by revealing entanglement between distinct subsystems of a spinor Bose-Einstein condensate. Our scheme builds on the spatially resolved simultaneous detection of the quantum field in two conjugate observables which allows the experimental confirmation of quantum correlations between local as well as nonlocal partitions of the system. The detection of squeezing in Bogoliubov modes in a multimode setting illustrates its potential to boost the capabilities of quantum simulations to study entanglement in spatially extended many-body systems.

4.
Phys Rev Lett ; 126(19): 190503, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047593

RESUMO

Entanglement is not only the resource that fuels many quantum technologies but also plays a key role for some of the most profound open questions of fundamental physics. Experiments controlling quantum systems at the single quantum level may shed light on these puzzles. However, measuring, or even bounding, entanglement experimentally has proven to be an outstanding challenge, especially when the prepared quantum states are mixed. We use entropic uncertainty relations for bipartite systems to derive measurable lower bounds on distillable entanglement. We showcase these bounds by applying them to physical models realizable in cold-atom experiments. The derived entanglement bounds rely on measurements in only two different bases and are generically applicable to any quantum simulation platform.

5.
Phys Rev Lett ; 127(23): 230501, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936784

RESUMO

We develop a variational approach to simulating the dynamics of open quantum many-body systems using deep autoregressive neural networks. The parameters of a compressed representation of a mixed quantum state are adapted dynamically according to the Lindblad master equation by employing a time-dependent variational principle. We illustrate our approach by solving the dissipative quantum Heisenberg model in one dimension for up to 40 spins and in two dimensions for a 4×4 system and by applying it to the simulation of confinement dynamics in the presence of dissipation.

6.
Phys Rev Lett ; 123(6): 063603, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491167

RESUMO

We augment the information extractable from a single absorption image of a spinor Bose-Einstein condensate by coupling to initially empty auxiliary hyperfine states. Performing unitary transformations in both the original and auxiliary hyperfine manifold enables the simultaneous measurement of multiple spin-1 observables. We apply this scheme to an elongated atomic cloud of ^{87}Rb to simultaneously read out three orthogonal spin directions and with that directly access the spatial spin structure. The readout even allows the extraction of quantum correlations which we demonstrate by detecting spin-nematic squeezing without state tomography.

7.
Phys Rev Lett ; 120(4): 040402, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437425

RESUMO

Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

8.
Phys Rev Lett ; 113(23): 233002, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526126

RESUMO

In an ensemble of laser-driven atoms involving strongly interacting Rydberg states, the steady-state excitation probability is usually substantially suppressed. In contrast, here we identify a regime in which the Rydberg excited fraction is enhanced by the interaction. This effect is associated with the buildup of many-body coherences induced by coherent multiphoton excitations between collective states. The excitation enhancement should be observable under currently existing experimental conditions and may serve as a direct probe for the presence of coherent multiphoton dynamics involving collective quantum states.

9.
Phys Rev E ; 105(4-2): 045315, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590556

RESUMO

Path integrals with complex actions are encountered for many physical systems ranging from spin- or mass-imbalanced atomic gases and graphene to quantum chromodynamics at finite density to the nonequilibrium evolution of quantum systems. Many computational approaches have been developed for tackling the sign problem emerging for complex actions. Among these, complex Langevin dynamics has the appeal of general applicability. One of its key challenges is the potential convergence of the dynamics to unphysical fixed points. The statistical sampling process at such a fixed point is not based on the physical action and hence leads to wrong predictions. Moreover, its unphysical nature is hard to detect due to the implicit nature of the process. In the present work we set up a general approach based on a Markov chain Monte Carlo scheme in an extended state space. In this approach we derive an explicit real sampling process for generalized complex Langevin dynamics. Subject to a set of constraints, this sampling process is the physical one. These constraints originate from the detailed-balance equations satisfied by the Monte Carlo scheme. This allows us to rederive complex Langevin dynamics from a new perspective and establishes a framework for the explicit construction of new sampling schemes for complex actions.

10.
iScience ; 25(8): 104707, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992070

RESUMO

Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes ( N ≤ 10 ). A systematic hyperparameter study shows that performance depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems.

11.
Science ; 360(6387): 413-416, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700262

RESUMO

A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

12.
Nat Commun ; 7: 11279, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075831

RESUMO

Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(5 Pt 1): 051136, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20866214

RESUMO

We investigate the quantum transmission through laterally driven single- and double-barrier systems in the nonlinear regime of strong driving. A broad parameter range is explored, distinguishing in particular between different frequency regimes. The applicability of an effective, time independent, potential description in the high-frequency regime is explored. Moreover, we analyze in detail the inelastic processes and their dependence on parameters, resonant tunneling, and photon assisted tunneling. For the single-barrier problem we address driving laws that differ from the purely sinusoidal one. In this context, we encounter reduced spatial and temporal symmetries and demonstrate the corresponding effects on quantum pumping. For the double barrier, the focus of our studies lies on the impact of the variation in the relative phase of the barriers on the transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA