Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(16): 8470-8484, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31287868

RESUMO

Chromatin organization is crucial for regulating gene expression. Previously, we showed that nucleosomes form groups, termed clutches. Clutch size correlated with the pluripotency grade of mouse embryonic stem cells and human induced pluripotent stem cells. Recently, it was also shown that regions of the chromatin containing activating epigenetic marks were composed of small and dispersed chromatin nanodomains with lower DNA density compared to the larger silenced domains. Overall, these results suggest that clutch size may regulate DNA packing density and gene activity. To directly test this model, we carried out 3D, two-color super-resolution microscopy of histones and DNA with and without increased histone tail acetylation. Our results showed that lower percentage of DNA was associated with nucleosome clutches in hyperacetylated cells. We further showed that the radius and compaction level of clutch-associated DNA decreased in hyperacetylated cells, especially in regions containing several neighboring clutches. Importantly, this change was independent of clutch size but dependent on the acetylation state of the clutch. Our results directly link the epigenetic state of nucleosome clutches to their DNA packing density. Our results further provide in vivo support to previous in vitro models that showed a disruption of nucleosome-DNA interactions upon hyperacetylation.


Assuntos
DNA/química , Epigênese Genética , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Ciclo Celular/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Heterocromatina/ultraestrutura , Histonas/genética , Humanos , Microscopia/métodos , Nucleossomos/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 115(51): 12991-12996, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509979

RESUMO

Recent advancements in single-molecule-based superresolution microscopy have made it possible to visualize biological structures with unprecedented spatial resolution. Determining the spatial coorganization of these structures within cells under physiological and pathological conditions is an important biological goal. This goal has been stymied by the current limitations of carrying out superresolution microscopy in multiple colors. Here, we develop an approach for simultaneous multicolor superresolution imaging which relies solely on fluorophore excitation, rather than fluorescence emission properties. By modulating the intensity of the excitation lasers at different frequencies, we show that the color channel can be determined based on the fluorophore's response to the modulated excitation. We use this frequency multiplexing to reduce the image acquisition time of multicolor superresolution DNA-PAINT while maintaining all its advantages: minimal color cross-talk, minimal photobleaching, maximal signal throughput, ability to maintain the fluorophore density per imaged color, and ability to use the full camera field of view. We refer to this imaging modality as "frequency multiplexed DNA-PAINT," or fm-DNA-PAINT for short. We also show that frequency multiplexing is fully compatible with STORM superresolution imaging, which we term fm-STORM. Unlike fm-DNA-PAINT, fm-STORM is prone to color cross-talk. To overcome this caveat, we further develop a machine-learning algorithm to correct for color cross-talk with more than 95% accuracy, without the need for prior information about the imaged structure.


Assuntos
Cor , DNA/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Corantes Fluorescentes , Humanos
3.
Nucleic Acids Res ; 46(5): e30, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29294098

RESUMO

CRISPR/dCas9-based labeling has allowed direct visualization of genomic regions in living cells. However, poor labeling efficiency and signal-to-background ratio have limited its application to visualize genome organization using super-resolution microscopy. We developed (Po)STAC (Polycistronic SunTAg modified CRISPR) by combining CRISPR/dCas9 with SunTag labeling and polycistronic vectors. (Po)STAC enhances both labeling efficiency and fluorescence signal detected from labeled loci enabling live cell imaging as well as super-resolution fixed-cell imaging of multiple genes with high spatiotemporal resolution.


Assuntos
Sistemas CRISPR-Cas/genética , Genes/genética , Vetores Genéticos/genética , Medições Luminescentes/métodos , Imagem com Lapso de Tempo/métodos , Animais , Linhagem Celular , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Hibridização in Situ Fluorescente/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Reprodutibilidade dos Testes , Telômero/genética , Telômero/metabolismo
4.
Photodiagnosis Photodyn Ther ; 19: 78-83, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28465164

RESUMO

The development of a tumor in the chicken chorioallantoic membrane (CAM) enables a more individualized understanding of the dynamics of the photosensitizer (PS) interaction with the tumor blood vessels and cells. Photogem® and 5-aminolevulinic acid (ALA), a protoporphyrin IX (PpIX) precursor, were used as PS and their red fluorescence enabled the monitoring of PS dynamic distribution in the vessels and in the tumor. With a tumor model in CAM and fluorescence assessment, the aim of this study was to evaluate the PDT parameters comparing different photosensitezers. In this model, the topical application was chosen as the best way of drug delivery and widefield fluorescence images were at every 30min. The images were processed in a MATLAB® routine for a semi-quantitative analysis of the red fluorescence. PpIX formation in the blood vessels and in the tumor region was observed after 3h and 1.5h, respectively, whereas Photogem® was accumulated in the tumor region after 2h. The illumination was performed by a diode laser with emission centered at 635nm and irradiance of 80mW/cm2 for 10min. After PDT irradiation, the photobleaching for both compounds was observed. Photogem® showed a reduced photobleaching, however, both PS induced a destruction of the tumor mass and vascular network in the treated area.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/farmacologia , Animais , Linhagem Celular Tumoral , Galinhas , Hematoporfirinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA