RESUMO
Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England.
Assuntos
Técnicas de Apoio para a Decisão , Monitoramento AmbientalRESUMO
Recent years have seen a dramatic increase in the amount and availability of data in the diverse areas of medicinal chemistry, making it possible to achieve significant advances in fields such as the design, synthesis and biological evaluation of compounds. However, with this data explosion, the storage, management and analysis of available data to extract relevant information has become even a more complex task that offers challenging research issues to Artificial Intelligence (AI) scientists. Ontologies have emerged in AI as a key tool to formally represent and semantically organize aspects of the real world. Beyond glossaries or thesauri, ontologies facilitate communication between experts and allow the application of computational techniques to extract useful information from available data. In medicinal chemistry, multiple ontologies have been developed during the last years which contain knowledge about chemical compounds and processes of synthesis of pharmaceutical products. This article reviews the principal standards and ontologies in medicinal chemistry, analyzes their main applications and suggests future directions.