Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638077

RESUMO

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Assuntos
Evolução Biológica , Peixes Listrados/genética , Cromossomos Sexuais , Envelhecimento , Animais , Feminino , Genoma , Peixes Listrados/fisiologia , Masculino , Dados de Sequência Molecular , Processos de Determinação Sexual
2.
PLoS Genet ; 14(3): e1007272, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570707

RESUMO

The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were "cellular respiration" and "metal ion homeostasis", as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination.


Assuntos
Longevidade/genética , Roedores/genética , Seleção Genética , Animais , Genoma , Homeostase , Transporte de Íons , Estresse Oxidativo , Especificidade da Espécie , Transcriptoma
3.
Mol Plant Microbe Interact ; 33(9): 1129-1141, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689871

RESUMO

Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases.


Assuntos
Proteínas de Bactérias/química , Flores/microbiologia , Phytoplasma/genética , Doenças das Plantas/microbiologia , Proteínas de Bactérias/genética , Plantas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
4.
BMC Evol Biol ; 19(1): 89, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975078

RESUMO

BACKGROUND: Standard evolutionary theories of aging postulate that reduced extrinsic mortality leads to evolution of longevity. Clownfishes of the genus Amphiprion live in a symbiotic relationship with sea anemones that provide protection from predators. We performed a survey and identified at least two species with a lifespan of over 20 years. Given their small size and ease of captive reproduction, clownfish lend themselves as experimental models of exceptional longevity. To identify genetic correlates of exceptional longevity, we sequenced the transcriptomes of Amphiprion percula and A. clarkii and performed a scan for positively-selected genes (PSGs). RESULTS: The PSGs that we identified in the last common clownfish ancestor were compared with PSGs detected in long-lived mole rats and short-lived killifishes revealing convergent evolution in processes such as mitochondrial biogenesis. Among individual genes, the Mitochondrial Transcription Termination Factor 1 (MTERF1), was positively-selected in all three clades, whereas the Glutathione S-Transferase Kappa 1 (GSTK1) was under positive selection in two independent clades. For the latter, homology modelling strongly suggested that positive selection targeted enzymatically important residues. CONCLUSIONS: These results indicate that specific pathways were recruited in independent lineages evolving an exceptionally extended or shortened lifespan and point to mito-nuclear balance as a key factor.


Assuntos
Evolução Biológica , Longevidade/genética , Fases de Leitura Aberta/genética , Perciformes/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ontologia Genética , Biogênese de Organelas , Filogenia
5.
Microbiology (Reading) ; 163(8): 1248-1259, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28818119

RESUMO

Small regulatory RNAs (sRNAs) are the most prominent post-transcriptional regulators in all kingdoms of life. A few of them, e.g. SR1 from Bacillus subtilis, are dual-function sRNAs. SR1 acts as a base-pairing sRNA in arginine catabolism and as an mRNA encoding the small peptide SR1P in RNA degradation. Both functions of SR1 are highly conserved among 23 species of Bacillales. Here, we investigate the interaction between SR1P and GapA by a combination of in vivo and in vitro methods. De novo prediction of the structure of SR1P yielded five models, one of which was consistent with experimental circular dichroism spectroscopy data of a purified, synthetic peptide. Based on this model structure and a comparison between the 23 SR1P homologues, a series of SR1P mutants was constructed and analysed by Northern blotting and co-elution experiments. The known crystal structure of Geobacillus stearothermophilus GapA was used to model SR1P onto this structure. The hypothetical SR1P binding pocket, composed of two α-helices at both termini of GapA, was investigated by constructing and assaying a number of GapA mutants in the presence and absence of wild-type or mutated SR1P. Almost all residues of SR1P located in the two highly conserved motifs are implicated in the interaction with GapA. A critical lysine residue (K332) in the C-terminal α-helix 14 of GapA corroborated the predicted binding pocket.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , RNA Bacteriano/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Peptídeos/genética , Ligação Proteica , RNA Bacteriano/metabolismo
6.
Nucleic Acids Res ; 43(5): 2958-67, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712103

RESUMO

The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical 'wings' of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
7.
Chemphyschem ; 17(13): 1961-8, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27061973

RESUMO

The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined.


Assuntos
Ressonância Magnética Nuclear Biomolecular , alfa-Sinucleína/química
8.
Nucleic Acids Res ; 42(20): 12614-27, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25336622

RESUMO

Human RecQL4 belongs to the ubiquitous RecQ helicase family. Its N-terminal region represents the only homologue of the essential DNA replication initiation factor Sld2 of Saccharomyces cerevisiae, and also participates in the vertebrate initiation of DNA replication. Here, we utilized a random screen to identify N-terminal fragments of human RecQL4 that could be stably expressed in and purified from Escherichia coli. Biophysical characterization of these fragments revealed that the Sld2 homologous RecQL4 N-terminal domain carries large intrinsically disordered regions. The N-terminal fragments were sufficient for the strong annealing activity of RecQL4. Moreover, this activity appeared to be the basis for an ATP-independent strand exchange activity. Both activities relied on multiple DNA-binding sites with affinities to single-stranded, double-stranded and Y-structured DNA. Finally, we found a remarkable affinity of the N-terminus for guanine quadruplex (G4) DNA, exceeding the affinities for other DNA structures by at least 60-fold. Together, these findings suggest that the DNA interactions mediated by the N-terminal region of human RecQL4 represent a central function at the replication fork. The presented data may also provide a mechanistic explanation for the role of elements with a G4-forming propensity identified in the vicinity of vertebrate origins of DNA replication.


Assuntos
DNA/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Quadruplex G , Humanos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Estrutura Terciária de Proteína
9.
J Biomol NMR ; 62(1): 7-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712239

RESUMO

The generation of efficient RN n (ν)s,(ν)k symmetry-based low-power RF pulse schemes for simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic "R" element and tailoring of the RF field-modulation profile of the 180° pulses so as to obtain efficient magnetisation transfer characteristics over the resonance offset range of the nuclei involved. Mixing schemes leading to simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling would permit the one-shot acquisition of different chemical shift correlation spectra that are typically utilized for protein backbone resonance assignments and thereby save data acquisition time. At representative MAS frequencies the efficacies of the mixing schemes presented here have been experimentally demonstrated via the simultaneous acquisition of {3D CONH and 3D CANH}, {3D CONH and 3D CO(CA)NH} and {3D CONH, 3D CANH, 3D CO(CA)NH and 3D CA(CO)NH} spectra generated via the magnetisation transfer pathways (1)H → (13)CO → (15)N → (1)H (CONH), (1)H → (13)CA → (15)N → (1)H (CANH) and (1)H → (13)CO → (13)CA → (15)N → (1)H (CO(CA)NH) and (1)H → (13)CA → (13)CO → (15)N → (1)H (CA(CO)NH).


Assuntos
Isótopos de Carbono/química , Isótopos de Nitrogênio/química , Proteínas/química , Ressonância Magnética Nuclear Biomolecular
10.
J Biomol NMR ; 63(2): 201-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282620

RESUMO

A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos
11.
Chemphyschem ; 16(4): 739-46, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25639453

RESUMO

An efficient approach to NMR assignments in intrinsically disordered proteins is presented, making use of the good dispersion of cross peaks observed in [(15) N,(13) C']- and [(13) C',(1) H(N) ]-correlation spectra. The method involves the simultaneous collection of {3D (H)NCO(CAN)H and 3D (HACA)CON(CA)HA} spectra for backbone assignments via sequential H(N) and H(α) correlations and {3D (H)NCO(CACS)HS and 3D (HS)CS(CA)CO(N)H} spectra for side-chain (1) H and (13) C assignments, employing sequential (1) H data acquisitions with direct detection of both the amide and aliphatic protons. The efficacy of the approach for obtaining resonance assignments with complete backbone and side-chain chemical shifts is demonstrated experimentally for the 61-residue [(13) C,(15) N]-labelled peptide of a voltage-gated potassium channel protein of the Kv1.4 channel subunit. The general applicability of the approach for the characterisation of moderately sized globular proteins is also demonstrated.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
12.
Proc Natl Acad Sci U S A ; 109(31): 12503-8, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22814377

RESUMO

Oligomers are intermediates of the ß-amyloid (Aß) peptide fibrillogenic pathway and are putative pathogenic culprits in Alzheimer's disease (AD). Here we report the biotechnological generation and biochemical characterization of an oligomer-specific antibody fragment, KW1. KW1 not only discriminates between oligomers and other Aß conformations, such as fibrils or disaggregated peptide; it also differentiates between different types of Aß oligomers, such as those formed by Aß (1-40) and Aß (1-42) peptide. This high selectivity of binding contrasts sharply with many other conformational antibodies that interact with a large number of structurally analogous but sequentially different antigens. X-ray crystallography, NMR spectroscopy, and peptide array measurements imply that KW1 recognizes oligomers through a hydrophobic and significantly aromatic surface motif that includes Aß residues 18-20. KW1-positive oligomers occur in human AD brain samples and induce synaptic dysfunctions in living brain tissues. Bivalent KW1 potently neutralizes this effect and interferes with Aß assembly. By altering a specific step of the fibrillogenic cascade, it prevents the formation of mature Aß fibrils and induces the accumulation of nonfibrillar aggregates. Our data illuminate significant mechanistic differences in oligomeric and fibril recognition and suggest the considerable potential of KW1 in future studies to detect or inhibit specific types of Aß conformers.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Multimerização Proteica , Motivos de Aminoácidos , Anticorpos Monoclonais , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína
13.
J Biomol NMR ; 59(4): 211-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24943494

RESUMO

A procedure for the simultaneous acquisition of {HNCOCANH & HCCCONH} chemical shift correlation spectra employing sequential [Formula: see text] data acquisition for moderately sized proteins is presented. The suitability of the approach for obtaining sequential resonance assignments, including complete [Formula: see text] and [Formula: see text] chemical shift information, is demonstrated experimentally for a [Formula: see text] and [Formula: see text] labelled sample of the C-terminal winged helix (WH) domain of the minichromosome maintenance (MCM) complex of Sulfolobus solfataricus. The chemical shift information obtained was used to calculate the global fold of this winged helix domain via CS-Rosetta. This demonstrates that our procedure provides a reliable and straight-forward protocol for a quick global fold determination of moderately-sized proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Manutenção de Minicromossomo/química , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular/métodos , Sulfolobus solfataricus/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Bioinformatics ; 29(14): 1750-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23681122

RESUMO

MOTIVATION: Circular dichroism (CD) spectroscopy is one of the most versatile tools to study protein folding and to validate the proper fold of purified proteins. Here, we aim to provide a readily accessible, user-friendly and platform-independent tool capable of analysing multiple CD datasets of virtually any format and returning results as high-quality graphical output to the user. RESULTS: CAPITO (CD Anaylsis and Plotting Tool) is a novel web server-based tool for analysing and plotting CD data. It allows reliable estimation of secondary structure content utilizing different approaches. CAPITO accepts multiple CD datasets and, hence, is well suited for a wide application range such as the analysis of temperature or pH-dependent (un)folding and the comparison of mutants. AVAILABILITY: http://capito.nmr.fli-leibniz.de. CONTACT: cwiede@fli-leibniz.de or mago@fli-leibniz.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Dicroísmo Circular/métodos , Estrutura Secundária de Proteína , Software , Internet , Dobramento de Proteína
15.
Nucleic Acids Res ; 40(17): 8309-24, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730300

RESUMO

The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid-state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73 Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix α3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/química , RecQ Helicases/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , RecQ Helicases/metabolismo , Alinhamento de Sequência
16.
J Biomol NMR ; 57(1): 65-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23943084

RESUMO

NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ("scrambling") of NH and CO groups in a standard Escherichia coli expression host is provided.


Assuntos
Aminoácidos/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Sequência de Aminoácidos , Isótopos de Carbono , Proteínas de Ligação a DNA/biossíntese , Escherichia coli/genética , Humanos , Marcação por Isótopo , Isótopos de Nitrogênio , Proteínas Nucleares/biossíntese
17.
Mol Microbiol ; 79(2): 342-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21219456

RESUMO

Oxidation of methionine to methionine sulphoxide (MetSO) may lead to loss of molecular integrity and function. This oxidation can be 'repaired' by methionine sulphoxide reductases (MSRs), which reduce MetSO back to methionine. Two structurally unrelated classes of MSRs, MSRA and MSRB, show stereoselectivity towards the S and the R enantiomer of the sulphoxide respectively. Interestingly, these enzymes were even maintained throughout evolution in anaerobic organisms. Here, the activity and the nuclear magnetic resonance (NMR) structure of MTH711, a zinc containing MSRB from the thermophilic, methanogenic archaebacterium Methanothermobacter thermoautotrophicus, are described. The structure appears more rigid as compared with similar MSRBs from aerobic and mesophilic organisms. No significant structural differences between the oxidized and the reduced MTH711 state can be deduced from our NMR data. A stable sulphenic acid is formed at the catalytic Cys residue upon oxidation of the enzyme with MetSO. The two non-zinc-binding cysteines outside the catalytic centre are not necessary for activity of MTH711 and are not situated close enough to the active-site cysteine to serve in regenerating the active centre via the formation of an intramolecular disulphide bond. These findings imply a reaction cycle that differs from that observed for other MSRBs.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Methanobacteriaceae/enzimologia , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
J Biomol NMR ; 54(4): 325-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23180049

RESUMO

We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC'C and 3D C'NCA with sequential (13)C acquisitions, 3D NHH and 3D NC'H with sequential (1)H acquisitions and 3D CANH and 3D C'NH with broadband (13)C-(15)N mixing are demonstrated using microcrystalline samples of the ß1 immunoglobulin binding domain of protein G (GB1) and the chicken α-spectrin SH3 domain.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isótopos de Carbono , Análise de Fourier , Proteínas do Tecido Nervoso/química , Isótopos de Nitrogênio , Espectrina/química , Domínios de Homologia de src
19.
J Biomol NMR ; 50(3): 277-84, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21674236

RESUMO

An approach for conveniently implementing low-power CN ( n ) (ν) and RN ( n ) (ν) symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile of the basic element. The efficacy of the approach is experimentally shown by the acquisition of (15)N-(13)C dipolar and (13)C-(13)C scalar and dipolar coupling mediated chemical shift correlation spectra at representative MAS frequencies.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono/química , Isótopos de Nitrogênio/química
20.
J Biomol NMR ; 47(1): 7-17, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20306117

RESUMO

An approach for generating efficient NR(vS, vk)(n) symmetry-based dual channel RF pulse schemes for gamma-encoded broadband (15)N-(13)C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic "R" element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic "R" element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and (15)N-(13)C chemical shift correlation experiments. Employing such (13)C-(15)N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.


Assuntos
Isótopos de Carbono/química , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Simulação por Computador , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA