Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 16(8): e2005750, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091978

RESUMO

Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.


Assuntos
Camundongos Endogâmicos/genética , Camundongos/genética , Sono/genética , Animais , Bases de Dados Factuais , Metaboloma/genética , Privação do Sono/genética , Transcriptoma/genética
2.
Bioinformatics ; 31(17): 2860-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943471

RESUMO

MOTIVATION: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. RESULTS: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. AVAILABILITY: SwissLipids is freely available at http://www.swisslipids.org/. CONTACT: alan.bridge@isb-sib.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Bases de Conhecimento , Metabolismo dos Lipídeos , Lipídeos/química , Lipídeos/fisiologia , Espectrometria de Massas/métodos , Humanos , Lipídeos/análise
4.
Bioinformatics ; 30(21): 3131-3, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25015990

RESUMO

UNLABELLED: Sequencing oligosaccharides by exoglycosidases, either sequentially or in an array format, is a powerful tool to unambiguously determine the structure of complex N- and O-link glycans. Here, we introduce GlycoDigest, a tool that simulates exoglycosidase digestion, based on controlled rules acquired from expert knowledge and experimental evidence available in GlycoBase. The tool allows the targeted design of glycosidase enzyme mixtures by allowing researchers to model the action of exoglycosidases, thereby validating and improving the efficiency and accuracy of glycan analysis. AVAILABILITY AND IMPLEMENTATION: http://www.glycodigest.org.


Assuntos
Glicosídeo Hidrolases , Oligossacarídeos/química , Software , Bases de Conhecimento
5.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36862511

RESUMO

Circadian rhythmicity in renal function suggests rhythmic adaptations in renal metabolism. To decipher the role of the circadian clock in renal metabolism, we studied diurnal changes in renal metabolic pathways using integrated transcriptomic, proteomic, and metabolomic analysis performed on control mice and mice with an inducible deletion of the circadian clock regulator Bmal1 in the renal tubule (cKOt). With this unique resource, we demonstrated that approximately 30% of RNAs, approximately 20% of proteins, and approximately 20% of metabolites are rhythmic in the kidneys of control mice. Several key metabolic pathways, including NAD+ biosynthesis, fatty acid transport, carnitine shuttle, and ß-oxidation, displayed impairments in kidneys of cKOt mice, resulting in perturbed mitochondrial activity. Carnitine reabsorption from primary urine was one of the most affected processes with an approximately 50% reduction in plasma carnitine levels and a parallel systemic decrease in tissue carnitine content. This suggests that the circadian clock in the renal tubule controls both kidney and systemic physiology.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Multiômica , Proteômica , Ritmo Circadiano/fisiologia , Rim/metabolismo , Carnitina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo
6.
Cancer Res ; 83(3): 363-373, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36459564

RESUMO

The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. SIGNIFICANCE: The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.


Assuntos
Neoplasias , Software , Humanos , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Neoplasias/genética , Análise de Célula Única , Microambiente Tumoral/genética
7.
Front Immunol ; 12: 666163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135895

RESUMO

The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.


Assuntos
COVID-19/imunologia , Influenza Humana/imunologia , Humanos , SARS-CoV-2/imunologia , Transcriptoma
8.
NPJ Syst Biol Appl ; 2: 16037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725481

RESUMO

Survival analyses based on the Kaplan-Meier estimate have been pervasively used to support or validate the relevance of biological mechanisms in cancer research. Recently, with the appearance of gene expression high-throughput technologies, this kind of analysis has been applied to tumor transcriptomics data. In a 'bottom-up' approach, gene-expression profiles that are associated with a deregulated pathway hypothetically involved in cancer progression are first identified and then subsequently correlated with a survival effect, which statistically supports or requires the rejection of such a hypothesis. In this work, we propose a 'top-down' approach, in which the clinical outcome (survival) is the starting point that guides the identification of deregulated biological mechanisms in cancer by a non-hypothesis-driven iterative survival analysis. We show that the application of our novel method to a population of ~2,000 breast cancer patients of the METABRIC consortium allows the identification of several well-known cancer mechanisms, such as ERBB4, HNF3A and TGFB pathways, and the investigation of their paradoxical dual effect. In addition, several novel biological mechanisms are proposed as potentially involved in cancer progression. The proposed exploratory methodology can be considered both alternative and complementary to classical 'bottom-up' approaches for validation of biological hypotheses. We propose that our method may be used to better characterize cancer, and may therefore impact the future design of therapies that are truly molecularly tailored to individual patients. The method, named SURCOMED, was implemented as a web-based tool, which is publicly available at http://surcomed.vital-it.ch. R scripts are also available at http://surcomed.sourceforge.net).

9.
Sci Rep ; 6: 26822, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27241320

RESUMO

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Regeneração , Animais , Expressão Gênica , Traumatismos Cardíacos/fisiopatologia , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA