Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 15(5): 519-528, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962627

RESUMO

Silencing of the somatic cell type-specific genes is a critical yet poorly understood step in reprogramming. To uncover pathways that maintain cell identity, we performed a reprogramming screen using inhibitors of chromatin factors. Here, we identify acetyl-lysine competitive inhibitors targeting the bromodomains of coactivators CREB (cyclic-AMP response element binding protein) binding protein (CBP) and E1A binding protein of 300 kDa (EP300) as potent enhancers of reprogramming. These inhibitors accelerate reprogramming, are critical during its early stages and, when combined with DOT1L inhibition, enable efficient derivation of human induced pluripotent stem cells (iPSCs) with OCT4 and SOX2. In contrast, catalytic inhibition of CBP/EP300 prevents iPSC formation, suggesting distinct functions for different coactivator domains in reprogramming. CBP/EP300 bromodomain inhibition decreases somatic-specific gene expression, histone H3 lysine 27 acetylation (H3K27Ac) and chromatin accessibility at target promoters and enhancers. The master mesenchymal transcription factor PRRX1 is one such functionally important target of CBP/EP300 bromodomain inhibition. Collectively, these results show that CBP/EP300 bromodomains sustain cell-type-specific gene expression and maintain cell identity.


Assuntos
Benzimidazóis/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Reprogramação Celular/efeitos dos fármacos , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Isoxazóis/farmacologia , Oxazepinas/farmacologia , Piperidinas/farmacologia , Benzimidazóis/química , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Inibidores Enzimáticos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Isoxazóis/química , Estrutura Molecular , Oxazepinas/química , Piperidinas/química , Domínios Proteicos/efeitos dos fármacos
2.
Stem Cell Res Ther ; 12(1): 287, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985578

RESUMO

BACKGROUND: Griscelli syndrome type 2 (GS-2) is a rare, autosomal recessive immune deficiency syndrome caused by a mutation in the RAB27A gene, which results in the absence of a protein involved in vesicle trafficking and consequent loss of function of in particular cytotoxic T and NK cells. Induced pluripotent stem cells (iPSC) express genes associated with pluripotency, have the capacity for infinite expansion, and can differentiate into cells from all three germ layers. They can be induced using integrative or non-integrative systems for transfer of the Oct4, Sox2, Klf4, and cMyc (OSKM) transcription factors. To better understand the pathophysiology of GS-2 and to test novel treatment options, there is a need for an in vitro model of GS-2. METHODS: Here, we generated iPSCs from 3 different GS-2 patients using lentiviral vectors. The iPSCs were characterized using flow cytometry and RT-PCR and tested for the expression of pluripotency markers. In vivo differentiation to cells from all three germlines was tested using a teratoma assay. In vitro differentiation of GS-2 iPSCs into hematopoietic stem and progenitor cells was done using Op9 feeder layers and specified media. RESULTS: All GS-2 iPSC clones displayed a normal karyotype (46XX or 46XY) and were shown to express the same RAB27A gene mutation that was present in the original somatic donor cells. GS-2 iPSCs expressed SSEA1, SSEA4, TRA-1-60, TRA-1-81, and OCT4 proteins, and SOX2, NANOG, and OCT4 expression were confirmed by RT-PCR. Differentiation capacity into cells from all three germ layers was confirmed using the teratoma assay. GS-2 iPSCs showed the capacity to differentiate into cells of the hematopoietic lineage. CONCLUSIONS: Using the lentiviral transfer of OSKM, we were able to generate different iPSC clones from 3 GS-2 patients. These cells can be used in future studies for the development of novel treatment options and to study the pathophysiology of GS-2 disease.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Alimentadoras , Humanos , Fator 4 Semelhante a Kruppel , Linfo-Histiocitose Hemofagocítica , Piebaldismo , Doenças da Imunodeficiência Primária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA