Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 95(3): 201-205, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38041684

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS: We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS: Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS: Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica , Serina C-Palmitoiltransferase , Humanos , Esclerose Lateral Amiotrófica/genética , Ceramidas , Mutação com Ganho de Função , Mutação/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/química , Esfingolipídeos
2.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38041679

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Criança , Humanos , Esclerose Lateral Amiotrófica/genética , Esfingolipídeos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Serina
3.
Brain ; 146(4): 1420-1435, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36718090

RESUMO

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Assuntos
Paraplegia Espástica Hereditária , Animais , Criança , Humanos , Paraplegia Espástica Hereditária/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
4.
Neuropathol Appl Neurobiol ; 48(7): e12842, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904184

RESUMO

AIMS: SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. METHODS: We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. RESULTS: In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. CONCLUSIONS: Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Doença dos Neurônios Motores , Doenças do Sistema Nervoso Periférico , Humanos , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/genética , Mutação , Esfingolipídeos , Serina/química , Serina/genética
5.
J Biol Chem ; 294(13): 5146-5156, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700557

RESUMO

Sphingolipids compose a lipid family critical for membrane structure as well as intra- and intercellular signaling. De novo sphingolipid biosynthesis is initiated by the enzyme serine palmitoyltransferase (SPT), which resides in the endoplasmic reticulum (ER) membrane. In both yeast and mammalian species, SPT activity is homeostatically regulated through small ER membrane proteins, the Orms in yeast and the ORMDLs in mammalian cells. These proteins form stable complexes with SPT. In yeast, the homeostatic regulation of SPT relies, at least in part, on phosphorylation of the Orms. However, this does not appear to be the case for the mammalian ORMDLs. Here, we accomplished a cell-free reconstitution of the sphingolipid regulation of the ORMDL-SPT complex to probe the underlying regulatory mechanism. Sphingolipid and ORMDL-dependent regulation of SPT was demonstrated in isolated membranes, essentially free of cytosol. This suggests that this regulation does not require soluble cytosolic proteins or small molecules such as ATP. We found that this system is particularly responsive to the pro-apoptotic sphingolipid ceramide and that this response is strictly stereospecific, indicating that ceramide regulates the ORMDL-SPT complex via a specific binding interaction. Yeast membranes harboring the Orm-SPT system also directly responded to sphingolipid, suggesting that yeast cells have, in addition to Orm phosphorylation, an additional Orm-dependent SPT regulatory mechanism. Our results indicate that ORMDL/Orm-mediated regulation of SPT involves a direct interaction of sphingolipid with the membrane-bound components of the SPT-regulatory apparatus.


Assuntos
Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Metabolismo dos Lipídeos
6.
J Lipid Res ; 60(5): 953-962, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792183

RESUMO

Isotope labels are frequently used tools to track metabolites through complex biochemical pathways and to discern the mechanisms of enzyme-catalyzed reactions. Isotopically labeled l-serine is often used to monitor the activity of the first enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT), as well as labeling downstream cellular metabolites. Intrigued by the effect that isotope labels may be having on SPT catalysis, we characterized the impact of different l-serine isotopologues on the catalytic activity of recombinant SPT isozymes from humans and the bacterium Sphingomonas paucimobilis Our data show that S. paucimobilis SPT activity displays a clear isotope effect with [2,3,3-D]l-serine, whereas the human SPT isoform does not. This suggests that although both human and S. paucimobilis SPT catalyze the same chemical reaction, there may well be underlying subtle differences in their catalytic mechanisms. Our results suggest that it is the activating small subunits of human SPT that play a key role in these mechanistic variations. This study also highlights that it is important to consider the type and location of isotope labels on a substrate when they are to be used in in vitro and in vivo studies.


Assuntos
Serina C-Palmitoiltransferase/metabolismo , Serina/química , Serina/metabolismo , Sphingomonas/enzimologia , Humanos , Marcação por Isótopo , Cinética , Microssomos/enzimologia , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/isolamento & purificação , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 113(21): 5928-33, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162368

RESUMO

Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.


Assuntos
Encéfalo/metabolismo , Ceramidas , Expressão Gênica , Proteínas de Membrana/deficiência , Neuritos , Doenças Neurodegenerativas , Esfingosina N-Aciltransferase/biossíntese , Esfingosina N-Aciltransferase/deficiência , Animais , Encéfalo/patologia , Sobrevivência Celular , Ceramidas/biossíntese , Ceramidas/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Neuritos/metabolismo , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Esfingolipídeos/biossíntese , Esfingolipídeos/genética , Esfingosina N-Aciltransferase/genética
8.
Proc Natl Acad Sci U S A ; 112(42): 12962-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438849

RESUMO

Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions.


Assuntos
Carbono/química , Mutação , Doenças Neurodegenerativas/enzimologia , Serina C-Palmitoiltransferase/química , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Doenças Neurodegenerativas/genética , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/genética , Ubiquitinação
9.
J Biol Chem ; 291(5): 2524-34, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26634277

RESUMO

Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/biossíntese , Divisão Celular , Ácidos Graxos Monoinsaturados/química , Glutationa Transferase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Homeostase , Mutação , Fosforilação , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase
10.
PLoS Genet ; 10(1): e1004010, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465216

RESUMO

Unbiased lipidomic approaches have identified impairments in glycerophosphocholine second messenger metabolism in patients with Alzheimer's disease. Specifically, we have shown that amyloid-ß42 signals the intraneuronal accumulation of PC(O-16:0/2:0) which is associated with neurotoxicity. Similar to neuronal cells, intracellular accumulation of PC(O-16:0/2:0) is also toxic to Saccharomyces cerevisiae, making yeast an excellent model to decipher the pathological effects of this lipid. We previously reported that phospholipase D, a phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding protein, was relocalized in response to PC(O-16:0/2:0), suggesting that this neurotoxic lipid may remodel lipid signaling networks. Here we show that PC(O-16:0/2:0) regulates the distribution of the PtdIns(4)P 5-kinase Mss4 and its product PtdIns(4,5)P2 leading to the formation of invaginations at the plasma membrane (PM). We further demonstrate that the effects of PC(O-16:0/2:0) on the distribution of PM PtdIns(4,5)P2 pools are in part mediated by changes in the biosynthesis of long chain bases (LCBs) and ceramides. A combination of genetic, biochemical and cell imaging approaches revealed that PC(O-16:0/2:0) is also a potent inhibitor of signaling through the Target of rampamycin complex 2 (TORC2). Together, these data provide mechanistic insight into how specific disruptions in phosphocholine second messenger metabolism associated with Alzheimer's disease may trigger larger network-wide disruptions in ceramide and phosphoinositide second messenger biosynthesis and signaling which have been previously implicated in disease progression.


Assuntos
Doença de Alzheimer/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilcolina/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Membrana Celular/efeitos dos fármacos , Ceramidas/biossíntese , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/biossíntese , Neurônios/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/biossíntese
11.
J Biol Chem ; 290(1): 90-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25395622

RESUMO

The relationship between serine palmitoyltransferase (SPT) activity and ORMDL regulation of sphingolipid biosynthesis was investigated in mammalian HEK293 cells. Each of the three human ORMDLs reduced the increase in long-chain base synthesis seen after overexpression of wild-type SPT or SPT containing the C133W mutation in hLCB1, which produces the non-catabolizable sphingoid base, 1-deoxySa. ORMDL-dependent repression of sphingoid base synthesis occurred whether SPT was expressed as individual subunits or as a heterotrimeric single-chain SPT fusion protein. Overexpression of the single-chain SPT fusion protein under the control of a tetracycline-inducible promoter in stably transfected cells resulted in increased endogenous ORMDL expression. This increase was not transcriptional; there was no significant increase in any of the ORMDL mRNAs. Increased ORMDL protein expression required SPT activity since overexpression of a catalytically inactive SPT with a mutation in hLCB2a had little effect. Significantly, increased ORMDL expression was also blocked by myriocin inhibition of SPT as well as fumonisin inhibition of the ceramide synthases, suggesting that increased expression is a response to a metabolic signal. Moreover, blocking ORMDL induction with fumonisin treatment resulted in significantly greater increases in in vivo SPT activity than was seen when ORMDLs were allowed to increase, demonstrating the physiological significance of this response.


Assuntos
Proteínas de Membrana/genética , Subunidades Proteicas/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Fumonisinas/farmacologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Mutação , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais , Esfingolipídeos/farmacologia , Especificidade por Substrato
13.
J Biol Chem ; 288(14): 10144-10153, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23426370

RESUMO

The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.


Assuntos
Serina C-Palmitoiltransferase/fisiologia , Sequência de Aminoácidos , Aminoácidos/química , Animais , Membrana Celular/metabolismo , Dimerização , Ativação Enzimática , Genes Fúngicos , Glicosilação , Humanos , Lipídeos/química , Microssomos/metabolismo , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina C-Palmitoiltransferase/química , Esfingolipídeos/química , Especificidade por Substrato
14.
Plant Cell ; 23(3): 1061-81, 2011 03.
Artigo em Inglês | MEDLINE | ID: mdl-21421810

RESUMO

Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Folhas de Planta/química , Raízes de Plantas/metabolismo , Esfingolipídeos/biossíntese , Oxirredutases do Álcool/genética , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sobrevivência Celular , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Homeostase , Ferro/metabolismo , Lipídeos/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Oxirredutases/metabolismo , Polimorfismo Genético , Potássio/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Leveduras/genética , Leveduras/metabolismo
15.
Cell Rep ; 43(2): 113717, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38285738

RESUMO

The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular ß-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular ß-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fosforilação , Proteínas/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Sci Adv ; 9(13): eadg0728, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989369

RESUMO

The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid ß sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.


Assuntos
Arabidopsis , Esfingolipídeos , Esfingolipídeos/metabolismo , Arabidopsis/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Ceramidas/metabolismo , Homeostase
18.
Proc Natl Acad Sci U S A ; 106(20): 8186-91, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416851

RESUMO

Serine palmitoyltransferase (SPT) catalyzes the first committed step in sphingolipid biosynthesis. In yeast, SPT is composed of a heterodimer of 2 highly-related subunits, Lcb1p and Lcb2p, and a third subunit, Tsc3p, which increases enzyme activity markedly and is required for growth at elevated temperatures. Higher eukaryotic orthologs of Lcb1p and Lcb2p have been identified, but SPT activity is not highly correlated with coexpression of these subunits and no ortholog of Tsc3p has been identified. Here, we report the discovery of 2 proteins, ssSPTa and ssSPTb, which despite sharing no homology with Tsc3p, each substantially enhance the activity of mammalian SPT expressed in either yeast or mammalian cells and therefore define an evolutionarily conserved family of low molecular weight proteins that confer full enzyme activity. The 2 ssSPT isoforms share a conserved hydrophobic central domain predicted to reside in the membrane, and each interacts with both hLCB1 and hLCB2 as assessed by positive split ubiquitin 2-hybrid analysis. The presence of these small subunits, along with 2 hLCB2 isofoms, suggests that there are 4 distinct human SPT isozymes. When each SPT isozyme was expressed in either yeast or CHO LyB cells lacking endogenous SPT activity, characterization of their in vitro enzymatic activities, and long-chain base (LCB) profiling revealed differences in acyl-CoA preference that offer a potential explanation for the observed diversity of LCB seen in mammalian cells.


Assuntos
Acil Coenzima A/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Linhagem Celular , Humanos , Mamíferos , Proteínas de Membrana , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/isolamento & purificação , Especificidade por Substrato
19.
J Biol Chem ; 285(30): 22846-52, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20504773

RESUMO

The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has approximately 10-20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.


Assuntos
Biocatálise , Domínio Catalítico/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Alanina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Espaço Extracelular/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/enzimologia , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Camundongos , Multimerização Proteica , Estrutura Quaternária de Proteína , Serina/metabolismo , Serina C-Palmitoiltransferase/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Especificidade por Substrato
20.
J Biol Chem ; 285(19): 14823-33, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20231268

RESUMO

Iron is an essential cofactor for enzymes involved in numerous cellular processes, yet little is known about the impact of iron deficiency on cellular metabolism or iron proteins. Previous studies have focused on changes in transcript and proteins levels in iron-deficient cells, yet these changes may not reflect changes in transport activity or flux through a metabolic pathway. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls. Iron deficiency led to changes in glucose metabolism, amino acid biosynthesis, and lipid biosynthesis that were due to deficiencies in specific iron-dependent enzymes. Iron-sulfur proteins exhibited loss of iron cofactors, yet amino acid synthesis was maintained. Ergosterol and sphingolipid biosynthetic pathways had blocks at points where heme and diiron enzymes function, whereas Ole1, the essential fatty acid desaturase, was resistant to iron depletion. Iron-deficient cells exhibited depletion of most iron enzyme activities, but loss of activity during iron deficiency did not consistently disrupt metabolism. Amino acid homeostasis was robust, but iron deficiency impaired lipid synthesis, altering the properties and functions of cellular membranes.


Assuntos
Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Deficiências de Ferro , Metabolômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Imunoprecipitação , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA