RESUMO
Orthopedic and dental implants made from Ti6Al4V are widely used due to their excellent mechanical properties and biocompatibility. However, the long-term performance of these implants can be compromised by bacterial infections. This study explores the development of hierarchically textured surfaces with enhanced bactericidal properties to address such challenges. Hierarchical surface structures were developed by combining microscale features produced by a microsecond laser and superimposed submicron features produced using a femtosecond laser. Microscale patterns were produced by the pulsed laser surface melting process, whereas submicrometer laser-induced periodic surface structures were created on top of them by femtosecond laser processing. Escherichia coli bacterial cells were cultured on the textured surface. After 24 h, a staining analysis was performed using SYTO9 and PI dyes to investigate the samples with a confocal microscope for live dead assays. Results showed bacterial colony formation onto the microscale surface textures with live bacterial cells, whereas the hierarchical surface textures display segregated and physically damaged bacterial cell attachments on surfaces. The hierarchical surface textures showed â¼98% dead bacterial cells due to the combined effect of its multiscale surface features and oxide formation during the laser processing steps. The efficacy of hierarchical surface textures in enhancing the antibacterial behavior of Ti6Al4V implants is evident from the conducted research. Such laser-based surface treatments can find potential applications in different industrial sectors.
Assuntos
Ligas , Antibacterianos , Escherichia coli , Lasers , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Endoscopes are ubiquitous in minimally invasive or keyhole surgeries globally. However, frequent removal of endoscopes from the patient's body due to the lens contaminations results in undesirable consequences. Therefore, a cost-effective process chain to fabricate thermoplastic-based endoscope lenses with superior antifouling and optical properties is proposed in this research. Such multifunctional surface response was achieved by lubricant impregnation of nanostructures. Two types of topographies were produced by femtosecond laser processing of metallic molds, especially to produce single-tier laser-induced periodic surface structures (LIPSS) and two-tier multiscale structures (MS). Then, these two LIPSS and MS masters were used to replicate them onto two thermoplastic substrates, namely polycarbonate and cyclic olefin copolymer, by using hot embossing. Finally, the LIPSS and MS surfaces of the replicas were infiltrated by silicone oils to prepare lubricant-impregnated surfaces (LIS). Droplet sliding tests revealed that the durability of the as-prepared LIS improved with the increase of the lubricant viscosity. Moreover, the single-tier LIPSS replicas exhibited longer-lasting lubricant conservation properties than the MS ones. Also, LIPSS-LIS replicas demonstrated an excellent optical transparency, better than the MS-LIS ones, and almost match the performance of the reference polished ones. Furthermore, the LIPSS-LIS treatment led to superior antifouling characteristics, i.e., regarding fogging, blood adhesion, protein adsorption, and microalgae attachment, and thus demonstrated its high suitability for treating endoscopic lenses. Finally, a proof-of-concept LIPSS-LIS treatment of endoscope lenses was conducted that confirmed their superior multifunctional response.
Assuntos
Incrustação Biológica , Cicloparafinas , Incrustação Biológica/prevenção & controle , Endoscópios , Humanos , Lasers , Lubrificantes , Óleos de Silicone , Propriedades de SuperfícieRESUMO
Antibacterial coatings are often employed to elastomer surfaces to inhibit bacterial attachment. However, such approaches could lead to increased antibiotic resistance. Surface micro-/nanotexturing is gaining significant attention recently, as it is a passive approach to reduce bacterial adhesion to surfaces. To this end, this work aims to assess the anti-biofouling functionality of femtosecond laser-induced submicron topographies on biomedical elastomer surfaces. Femtosecond laser processing was employed to produce two types of topographies on stainless-steel substrates. The first one was highly regular and single scale submicron laser-induced periodic surface structures (LIPSS) while the second one was multiscale structures (MSs) containing both submicron- and micron-scale features. Subsequently, these topographies were replicated on polydimethylsiloxane (PDMS) and polyurethane (PU) elastomers to evaluate their bacterial retention characteristics. The submicron textured PDMS and PU surfaces exhibited long-term hydrophobic durability up to 100 h under immersed conditions. Both LIPSS and MS topographies on PDMS and PU elastomeric surfaces were shown to substantially reduce (>89%) the adhesion of Gram-negative Escherichia coli bacteria. At the same time, the anti-biofouling performance of LIPSS and MS topographies was found to be comparable with that of lubricant-impregnated surfaces. The influence of physical defects on textured surfaces on the adhesion behavior of bacteria was also elucidated. The results presented here are significant because the polymeric biomedical components that can be produced by replication cost effectively, while their biocompatibility can be improved through femtosecond surface modification of the respective replication masters.
RESUMO
Frictional resistance across rough surfaces depends on the existence of slip on the liquid-gas interface; therefore, prolonging the existence of liquid-gas interface becomes relevant. In this work, we explore manipulation of the cavity shape in order to delay the wetting transition. We propose that liquid-driven vortices generated in the air cavity dissipate sufficient energy to delay the Cassie-Wenzel transition. Toward this, we fabricated cavities on the side walls of a polydimethylsiloxane-based microchannel for easy visualization and analysis of the dynamics of the liquid-gas interface. Two distinct flow regimes are identified in the experimental envelope. In the first regime, the liquid-gas interface is found to be protruding into the flow field, thus increasing the pressure drop at low Reynolds number. In the second regime, flow rate and geometry-based wetting transitions are established at moderate to high Reynolds numbers. We then investigate the effect of different cavity shapes (square, trapezoidal, and U-shape) in delaying the wetting transition by manipulating liquid-driven vortices. Out of the shapes considered in this study, trapezoidal cavities perform better than cavities with vertical walls in delaying the wetting transition due to geometrical squeezing of vortices toward the liquid-gas interface. Numerical simulations corroborate the experimental findings in that cavities with inclined walls exert more force on the liquid-gas interface, thus delaying their wetting transition. The proposed method being passive in nature appears more attractive than previous active methods.
RESUMO
Microwell platforms show great promise in single-cell studies and protein measurements because of their low volume sampling, rapid analysis and high throughput screening ability. However, the existing actuation mechanisms to manipulate the target samples and fabrication procedures involved in the microwell-based microfluidic devices are complex, resource-intensive and require an external power source. In this work, we present proof of concept of a simple, power-free and low-cost closed magnet digital microfluidics device for isolating biological entities in femtoliter-sized microwells. The target biological entities were encapsulated in magnetic liquid marbles and shuttled back and forth between micropatterned top and bottom plates in the microdevice to obtain high loading efficiency and short processing time. The microdevice performance was studied through fluorescent detection of three different entities: microbeads, bovine serum albumin (BSA) and Escherichia coli, captured in the microwell array. Almost 80% of the microwells were loaded with single microbeads in five shuttling cycles, in less than a minute. Further, a low volume of BSA was compartmentalized in the microwell array over a two order range of concentration. The microdevice exhibits two unique features: lotus leaf stamps were used to fabricate micropatterns (microwells and micropillars) on top and bottom plates to impart functionality and cost-effectiveness, and the target samples were actuated by a permanent magnet to make the microdevice power-free and simple in operation. The developed biomimetic microdevice is therefore capable of capturing a multitude of biological entities in low-resource settings.