Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608573

RESUMO

The application of life cycle assessment (LCA) to biorefineries is a necessary step to estimate their environmental sustainability. This review explores contemporary LCA biorefinery studies, across different feedstock categories, to understand approaches in dealing with key methodological decisions which arise, including system boundaries, consequential or attributional approach, allocation, inventory data, land use changes, product end-of-life (EOL), biogenic carbon storage, impact assessment and use of uncertainty analysis. From an initial collection of 81 studies, 59 were included within the final analysis, comprising 22 studies which involved dedicated feedstocks, 34 which involved residue feedstocks (including by-products and wastes), and a further 3 studies which involved multiple feedstocks derived from both dedicated and secondary sources. Many studies do not provide a comprehensive LCA assessment, often lacking detail on decisions taken, omitting key parts of the value chain, using generic data without uncertainty analyses, or omitting important impact categories. Only 28% of studies included some level of primary data, while 39% of studies did not undertake an uncertainty or sensitivity analysis. Just 8% of studies included data related to dLUC with a further 8% including iLUC, and only 14% of studies considering product end of life within their scope. The authors recommend more transparency in biorefinery LCA, with justification of key methodological decisions. A full value-chain approach should be adopted, to fully assess burdens and opportunities for biogenic carbon storage. We also propose a more prospective approach, taking into account future use of renewable energy sources, and opportunities for increasing circularity within bio-based value chains.


Assuntos
Indústria de Processamento de Alimentos , Incerteza
2.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743323

RESUMO

Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.

3.
Biotechnol Adv ; 66: 108168, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146921

RESUMO

Grasses, legumes and green plant wastes represent a ubiquitous feedstock for developing a bioeconomy in regions across Europe. These feedstocks are often an important source of ruminant feed, although much remains unused or underutilised. In addition to proteins, these materials are rich in fibres, sugars, minerals and other components that could also be used as inputs for bio-based product development. Green Biorefinery processes and initiatives are being developed to better capitalise on the potential of these feedstocks to produce sustainable food, feed, materials and energy in an integrated way. Such systems may support a more sustainable primary production sector, enable the valorisation of green waste streams, and provide new business models for farmers. This review presents the current developments in Green Biorefining, focusing on a broad feedstock and product base to include different models of Green Biorefinery. It demonstrates the potential and wide applicability of Green Biorefinery systems, the range of bio-based product opportunities and highlights the way forward for their broader implementation. While the potential for new products is extensive, quality control approval will be required prior to market entry.


Assuntos
Fabaceae , Poaceae , Alimentos , Biocombustíveis , Biomassa
4.
Bioresour Technol ; 346: 126444, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34848333

RESUMO

Waste is an inherent and unavoidable part of any process which can be attributed to various factors such as process inefficiencies, usability of resources and discarding of not so useful parts of the feedstock. Dairy is a burgeoning industry following the global population growth, resulting in generation of waste such as wastewater (from cleaning, processing, and maintenance), whey and sludge. These components are rich in nutrients, organic and inorganic materials. Additionally, the presence of alkaline and acidic detergents along with sterilizing agents in dairy waste makes it an environmental hazard. Thus, sustainable valorization of dairy waste requires utilization of biological methods such as microbial treatment. This review brings forward the current developments in utilization and valorization of dairy waste through microbes. Aerobic and anaerobic treatment of dairy waste using microbes can be a sustainable and green method to generate biofertilizers, biofuels, power, and other biobased products.


Assuntos
Biocombustíveis , Esgotos , Águas Residuárias
5.
Nat Food ; 3(10): 822-828, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37117878

RESUMO

Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals. Finally, we consider how gaps in the research could be filled and future opportunities could be developed to make optimal use of this important waste stream for food systems and beyond.

6.
Int J Biol Macromol ; 221: 456-471, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36070819

RESUMO

Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.


Assuntos
Saccharum , Saccharum/química , Celulose/química , Biotecnologia , Biomassa , Hidrólise , Lignina/química
7.
Ind Biotechnol (New Rochelle N Y) ; 17(3): 109-116, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34177391

RESUMO

Brand owners can play a key role in enabling biobased products to penetrate mass markets and to influence consumer choices in relation to biobased products. The current paper explores the role that brand owners can play in supporting market uptake of biobased products and captures the perspectives of European brand owners in relation to biobased products. Based on the findings of this paper, brand owners have an overall positive outlook towards biobased products, with 85% of brands who don't currently use biobased ingredients or products within their branded products and 95% of brands who don't currently use biobased packaging interested in including these in future. However, brand owners still perceive some concerns surrounding biobased products including their high cost, functional performance and ease of integration, as well as their reliability of supply. Regional differences among brand owners have also been identified, with cost and uncertainty around customer demand appearing as a bigger issue in continental Europe, with functional performance concerns appearing as a more pressing issue for brands in northern Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA