Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731476

RESUMO

Agricultural systems have been continuously intensified to meet rising demand for agricultural products. However, there are increasing concerns that larger, more connected crop fields and loss of seminatural areas exacerbate pest pressure, but findings to date have been inconclusive. Even less is known about whether increased pest pressure results in measurable effects for farmers, such as increased insecticide use and decreased crop yield. Using extensive spatiotemporal data sampled every 2 to 3 d throughout five growing seasons in 373 cotton fields, we show that pests immigrated earlier and were more likely to occur in larger cotton fields embedded in landscapes with little seminatural area (<10%). Earlier pest immigration resulted in earlier spraying that was further linked to more sprays per season. Importantly, crop yield was the lowest in these intensified landscapes. Our results demonstrate that both environmental conservation and production objectives can be achieved in conventional agriculture by decreasing field sizes and maintaining seminatural vegetation in the surrounding landscapes.


Assuntos
Agricultura , Produtos Agrícolas , Inseticidas , Controle de Pragas , Recuperação e Remediação Ambiental , Fazendeiros , Inseticidas/administração & dosagem , Estações do Ano , Análise Espaço-Temporal
2.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30957401

RESUMO

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Assuntos
Biodiversidade , Produtos Agrícolas , Ecossistema , Agricultura , Animais , Europa (Continente) , Polinização
3.
Ecol Lett ; 20(11): 1427-1436, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28901046

RESUMO

Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.


Assuntos
Agroquímicos/efeitos adversos , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Controle Biológico de Vetores , Produtos Agrícolas/efeitos dos fármacos , Ecologia , Europa (Continente)
4.
Proc Biol Sci ; 282(1801): 20142620, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25567651

RESUMO

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.


Assuntos
Ecologia/métodos , Ecossistema , Insetos/fisiologia , Nematoides/fisiologia , Oligoquetos/fisiologia , Animais , Biodiversidade , Modelos Biológicos
5.
Oecologia ; 170(4): 1099-109, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22644050

RESUMO

Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid-parasitoid and parasitoid-hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid-parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity-ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid-host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.


Assuntos
Agricultura , Biodiversidade , Cadeia Alimentar , Interações Hospedeiro-Parasita , Animais , Afídeos , Ecossistema , Poaceae
6.
Proc Biol Sci ; 278(1720): 2946-53, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21325327

RESUMO

Decline in landscape complexity owing to agricultural intensification may affect biodiversity, food web complexity and associated ecological processes such as biological control, but such relationships are poorly understood. Here, we analysed food webs of cereal aphids, their primary parasitoids and hyperparasitoids in 18 agricultural landscapes differing in structural complexity (42-93% arable land). Despite little variation in the richness of each trophic group, we found considerable changes in trophic link properties across the landscape complexity gradient. Unexpectedly, aphid-parasitoid food webs exhibited a lower complexity (lower linkage density, interaction diversity and generality) in structurally complex landscapes, which was related to the dominance of one aphid species in complex landscapes. Nevertheless, primary parasitism, as well as hyperparasitism, was higher in complex landscapes, with primary parasitism reaching levels for potentially successful biological control. In conclusion, landscape complexity appeared to foster higher parasitism rates, but simpler food webs, thereby casting doubt on the general importance of food web complexity for ecosystem functioning.


Assuntos
Afídeos/fisiologia , Cadeia Alimentar , Himenópteros/fisiologia , Controle Biológico de Vetores/métodos , Agricultura , Animais , Interações Hospedeiro-Parasita , Especificidade da Espécie
7.
Ecol Appl ; 21(6): 2187-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939053

RESUMO

Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V), compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G-V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid: host and predator: prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.


Assuntos
Agricultura/métodos , Insetos/fisiologia , Controle Biológico de Vetores , Animais , Europa (Continente) , Comportamento Alimentar
8.
Ecol Evol ; 9(4): 1702-1714, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847066

RESUMO

Body size is an integral functional trait that underlies pollination-related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non-bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed-model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co-variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co-variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, "pollimetry," which provides a comprehensive resource for allometric pollination research worldwide.

9.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
10.
Nat Ecol Evol ; 2(7): 1071-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784980

RESUMO

The United Nations 2030 Agenda for Sustainable Development calls for urgent actions to reduce global biodiversity loss. Here, we synthesize >44,000 articles published in the past decade to assess the research focus on global drivers of loss. Relative research efforts on different drivers are not well aligned with their assessed impact, and multiple driver interactions are hardly considered. Research on drivers of biodiversity loss needs urgent realignment to match predicted severity and inform policy goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Políticas , Pesquisa
11.
Ecol Evol ; 7(6): 1942-1953, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28331601

RESUMO

Predation is an interaction during which an organism kills and feeds on another organism. Past and current interest in studying predation in terrestrial habitats has yielded a number of methods to assess invertebrate predation events in terrestrial ecosystems. We provide a decision tree to select appropriate methods for individual studies. For each method, we then present a short introduction, key examples for applications, advantages and disadvantages, and an outlook to future refinements. Video and, to a lesser extent, live observations are recommended in studies that address behavioral aspects of predator-prey interactions or focus on per capita predation rates. Cage studies are only appropriate for small predator species, but often suffer from a bias via cage effects. The use of prey baits or analyses of prey remains are cheaper than other methods and have the potential to provide per capita predation estimates. These advantages often come at the cost of low taxonomic specificity. Molecular methods provide reliable estimates at a fine level of taxonomic resolution and are free of observer bias for predator species of any size. However, the current PCR-based methods lack the ability to estimate predation rates for individual predators and are more expensive than other methods. Molecular and stable isotope analyses are best suited to address systems that include a range of predator and prey species. Our review of methods strongly suggests that while in many cases individual methods are sufficient to study specific questions, combinations of methods hold a high potential to provide more holistic insights into predation events. This review presents an overview of methods to researchers that are new to the field or to particular aspects of predation ecology and provides recommendations toward the subset of suitable methods to identify the prey of invertebrate predators in terrestrial field research.

12.
Pest Manag Sci ; 72(4): 780-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26033304

RESUMO

BACKGROUND: In spite of considerable interest in the impact of pesticides on pest populations, few attempts have been made to link resistance patterns of insect pests to land-use features across spatial and temporal scales. We hypothesise that pollen beetle pesticide resistance increases in areas with a high proportion of oilseed rape and with an even mixture of winter and spring oilseed rape owing to high pesticide selection pressure in such areas. RESULTS: Here, we investigated 7 years of lambda-cyhalothrin (Karate(®) ) resistance in field-collected pollen beetle adults from a total of 180 sampling points across ten regions in Sweden. We found a positive effect on pollen beetle pesticide resistance of proportion of oilseed rape and even spring-winter oilseed rape mixture. However, this was true only for the regional spatial scale. Significant land-use effects in the long-term models, with oilseed rape data averaged over a longer (4 years) period of time, suggested an effect of regional landscape history on current pest resistance. CONCLUSION: For successful control of pollen beetle pesticide resistance, we suggest a long-term regional strategy for oilseed rape management. This land-use approach provides a framework for further investigations that integrate resistance management into landscape research.


Assuntos
Besouros/efeitos dos fármacos , Resistência a Inseticidas , Animais , Evolução Molecular , Resistência a Inseticidas/genética , Nitrilas/farmacologia , Piretrinas/farmacologia , Seleção Genética
13.
Ecol Evol ; 6(7): 2149-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27099712

RESUMO

Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

14.
PLoS One ; 11(6): e0157674, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27309729

RESUMO

Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Himenópteros/fisiologia , Plantas/parasitologia , Característica Quantitativa Herdável , Animais , Afídeos/classificação , Ecossistema , Europa (Continente) , Cadeia Alimentar , Especificidade de Hospedeiro , Himenópteros/classificação , Dinâmica Populacional , Especificidade da Espécie
15.
Trends Ecol Evol ; 30(9): 524-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138384

RESUMO

A common suggestion to support ecosystem services to agriculture provided by mobile organisms is to increase the amount of natural and seminatural habitat in the landscape. This might, however, be inefficient, and demands for agricultural products limit the feasibility of converting arable land into natural habitat. To develop more targeted means to promote ecosystem services, we need a solid understanding of the limitations to population growth for service-providing organisms. We propose a research agenda that identifies resource bottlenecks and interruptions over time to key beneficial organisms, emphasising their resulting population dynamics. Targeted measures that secure the continuity of resources throughout the life cycle of service-providing organisms are likely to effectively increase the stock, flow, and stability of ecosystem services.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Ecossistema , Animais , Estágios do Ciclo de Vida , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA