Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477284

RESUMO

Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.

2.
Crit Rev Food Sci Nutr ; 63(23): 6547-6563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35114860

RESUMO

Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and other technological advances (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work. The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move toward Industry 5.0.


Assuntos
Inteligência Artificial , Eliminação de Resíduos , Humanos , Alimentos , Indústria Alimentícia , Internet
3.
An Acad Bras Cienc ; 95(3): e20221023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055498

RESUMO

In the current study, the solubility and permeability of Osthole-loaded microemulsion were enhanced, which increased bioavailability. In addition, Carbomer 940 was added for prolonged drug delivery. The microemulsion was prepared after the screening of Kukui oil, Labrasol (surfactant), and transcutol-P (co-surfactant). Pseudoternary phase diagrams were employed to find the microemulsion region. Box Behnken Design (BBD) was employed for optimizing microemulsions. Variables were related and compared using mathematical equations and response surface plots (RSP). MEBG was then compared with control gel on the basis of stability studies, drug permeation, skin irritation studies, and anti-inflammatory studies. Microemulsion preparations depicted a pH of 5.27 - 5.80, a conductivity of 139 - 185 µS/cm, a poly-dispersity index of 0.116 - 0.388, a refractive index of 1.330 - 1.427, an average droplet size of 64 - 89 nm, homogeneity, spherical shape, viscosity 52 - 185 cP. Predicted values of Optimized microemulsions showed more reasonable agreement than experimental values. The microemulsion was stable and non-irritating on Rabbit skin. MEBG showed a significant difference from control gel for percent edema inhibition from the standard. The permeation enhancing capability of MEBG using a suitable viscosity fabricates it promising carrier for transdermal delivery of Osthole.


Assuntos
Absorção Cutânea , Pele , Animais , Coelhos , Administração Cutânea , Tensoativos/metabolismo , Emulsões/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930325

RESUMO

Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.

5.
Compr Rev Food Sci Food Saf ; 21(1): 46-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957673

RESUMO

Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.


Assuntos
Antocianinas , Verduras , Grão Comestível , Frutas , Tubérculos
6.
J Food Sci Technol ; 59(7): 2913-2924, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34840348

RESUMO

Grape processing by-products (particularly grape pomace) are known to contain high amounts of phenolic compounds. To improve the extraction of phenols from this by-product, it is necessary to develop a method and set and model optimal conditions for their extraction. By applying the design of experiments (DoE) approach, optimal experimental factors of Ultrasound-assisted extraction (USAE) were determined to obtain grape pomace extracts with a satisfactory yield of phenols anthocyanins, as well as extracts with high antioxidant capacity using reagents approved in the food industry. Initial method optimization covered two experimental factors: solvent concentration and the weight ratio of the sample and solvent using fixed USAE conditions from literature. For the final method optimization, the three investigated experimental factors were: pH value, the temperature of extraction, and extraction time. The optimal experimental conditions for the development of the method were 55% ethanol, sample/solvent ratio 1:40, pH 4.5, T 55 °C, and 30 min. Depending on the primary goal of the extraction process (the antioxidant activity, total phenolic content, content of individual phenols, or content of individual anthocyanins), these parameters can easily be modified to obtain the desired recovery. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05317-9.

7.
Trends Food Sci Technol ; 110: 193-200, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36567851

RESUMO

Background: COVID-19 pandemic has caused a global lockdown that has abruptly shut down core businesses and caused a worldwide recession. The forecast for a smooth transition for the agri-food and drink industry is, at best, alarming. Given that COVID-19 shutdown multiple core services (such as aviation, food services, supply chains, and export and import markets), there is an enormous deficiency in critical information to inform priority decision making for companies where this uncertainly is likely to impact negatively upon recovery. Scope and approach: The current article investigates potential innovations within the era of the COVID-19 crisis after framing them within the four issues of the food sector (food safety, bioactive food compounds, food security, and sustainability) that are directly affected by the pandemic. The prospect of foreseen innovations to disrupt the food sector during lockdown periods and the post-COVID-19 era is also discussed. Key findings and conclusions: Internet and Communication Technologies, blockchain in the food supply chain and other Industry 4.0 applications, as well as approaches that redefine the way we consume food (e.g., lab-grown meat, plant-based alternatives of meat, and valorization of a vast range of bioresources), are the innovations with the highest potential in the new era. There is also an equally pressing need to exploit social marketing to understand attitudes, perceptions, and barriers that influence the behavior change of consumers and the agri-food industry. Subsequently, this change will contribute to adapting to new norms forged by the COVID-19 pandemic, where there is a significant gap in knowledge for decision making.

8.
Trends Food Sci Technol ; 102: 293-299, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32834502

RESUMO

BACKGROUND: The COVID-19 pandemic has generated a new era in the world while we still figure out the consequences in different aspects of our daily life. The food supply chain and the food industry do not comprise an exception. SCOPE AND APPROACH: This review summarizes the possible transmission ways of COVID-19 through the foods, food supply chain, surfaces, and environment before exploring the development of corresponding detection tools of SARS-CoV-2. For the time being, the possibility of transmission through the food sector is considered negligible, and tracing of SARS-CoV-2 in working environments is not considered as a priority by public authorities. However, the adverse effects on the environment, food systems, and people along the food supply chain are already evident. KEY FINDINGS AND CONCLUSIONS: As long as we move from farm to fork, more safety measures are needed since more people (and subsequently more potential sources of infection) are involved in the process. The need for developing respective bioanalytical protocols for food and environmental safety applications to adapt in the post-lockdown period is also highlighted.

9.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824080

RESUMO

Deep eutectic solvents (DESs) have got huge interest as new green and sustainable solvents for the extraction of bioactive compounds from plants in recent decades. In the present study, we aimed to investigate the effectiveness of hydrophilic DES for the extraction of anthocyanin and polyphenol antioxidants from Roselle. A natural hydrophilic DES constituted of sodium acetate (hydrogen bond acceptor) and formic acid (hydrogen bond donor) designed to evaluate the total phenolic compound (TPC), total flavonoid (TFC), total anthocyanin (TACN), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP) values of Roselle. Distilled water, 70% ethanol, and 80% methanol used as conventional solvents for comparison. The results indicated that the DES prepared in molarity ratio (SAFAm) was the most efficient. Subsequently, this prominent DES selected for the optimization and the optimum extraction conditions were 1:3.6 molarity ratio, 0% additional water, and 10 mL solvent. TPC, TFC, TACN, FRAP, and DPPH radical scavenging at the optimum point were 233.26 mg GAE/g, 10.14 mg ECE/g, 10.62 mg D3S/g, 493.45 mmol ISE/g, and 343.41 mmol TE/g, respectively. The stability tests showed that anthocyanins were more stable in SAFAm. These findings revealed that SAFAm is an effective green solvent for the extraction of polyphenols from various plants.


Assuntos
Antocianinas/química , Antioxidantes/química , Etanol/química , Hibiscus/química , Metanol/química , Fenóis/química , Extratos Vegetais/química , Estabilidade de Medicamentos
10.
J Environ Manage ; 171: 158-165, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26899012

RESUMO

This study investigates the effect of direct amendment of olive mill wastewater (OMW) on the fertility of soil, described as poor in the area of Marrakech (semi-arid region) in Morocco. The treated plots were amended with untreated OMW generated by a traditional extraction process at the amount of 10 L/m(2)/year during two consecutive years. Results of these two years treatments with crude OMW at relatively high dose reveal an important increase in soil physicochemical characteristics, namely electric conductivity (EC), Na(+,) K(+), phosphorus, nitrogen, organic matter and soluble phenolic compounds. EC of treated soil was enhanced from 0.34 to 2.91 mS/cm as compared to the control soil. After spreading OMW in soil, the amounts of its nutritive elements increased by 81% for nitrogen, 66% for phosphorus and 88% for potassium. The accumulation of phenolic compounds and the increase of total peroxidase activity in plants provide evidence of their protective role against the physiological stress induced by OMW. However, this enrichment in mineral and nutritive elements decreased three months after OMW application, revealing OMW biodegradation in the studied calcareous soil. In parallel, an increase in the contents of the soluble phenolic compounds on the upper layer of soil was denoted and maize plants growth was efficiently raised. Significant amelioration was obtained notably in terms of fresh and dry weight of leaves, leaves area, spikes fresh and dry weight, 100 seeds weight and straw yield (37, 54, 27, 24, 14 and 9% respectively). Along with the correct choice of convenient soils notably calcareous ones and tolerant crops such as maize, this method could constitute an efficient approach for avoiding problems attributed to the uncontrolled disposal of these effluents and an effective strategy to regenerate degraded soils and represents an economical alternative that provides a local fertilizer.


Assuntos
Fertilizantes , Resíduos Industriais/análise , Olea , Solo/química , Águas Residuárias/química , Zea mays/crescimento & desenvolvimento , Biodegradação Ambiental , Marrocos , Nitrogênio/análise , Fenóis/análise , Fósforo/análise , Microbiologia do Solo
11.
Crit Rev Food Sci Nutr ; 55(12): 1758-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24758273

RESUMO

Modeling is an important tool in the food industry since it is able to simplify explanation of phenomena and optimize processes that cover a broad field from manufacture to byproducts treatment. The goal of the current article is to explore the development of enzyme kinetic models and their evolution over the last decades. For this reason, corresponding simulations were classified in deterministic, empirical, and stochastic models, prior investigating limitations, corrections, and industrial applications in each case. The ultimate goal is to provide an answer to a major problem: how can we develop an intermediate complexity model that achieves satisfactorily representation of the main phenomena with a limited number of parameters?


Assuntos
Amilases/metabolismo , Manipulação de Alimentos , Modelos Teóricos , Algoritmos , Cinética
12.
Foods ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397483

RESUMO

The global food systems face significant challenges driven by population growth, climate change, geopolitical conflicts, crises, and evolving consumer preferences. Intending to address these challenges, optimizing food production, adopting sustainable practices, and developing technological advancements are essential while ensuring the safety and public acceptance of innovations. This review explores the complex aspects of the future of food, encompassing sustainable food production, food security, climate-resilient and digitalized food supply chain, alternative protein sources, food processing, and food technology, the impact of biotechnology, cultural diversity and culinary trends, consumer health and personalized nutrition, and food production within the circular bioeconomy. The article offers a holistic perspective on the evolving food industry characterized by innovation, adaptability, and a shared commitment to global food system resilience. Achieving sustainable, nutritious, and environmentally friendly food production in the future involves comprehensive changes in various aspects of the food supply chain, including innovative farming practices, evolving food processing technologies, and Industry 4.0 applications, as well as approaches that redefine how we consume food.

13.
Heliyon ; 10(3): e25261, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327467

RESUMO

Due to its nutritional and bioactive content, tomato pomace (TP) remains among the world's richest fruits and vegetables. Tomatoes and TP (generated coproduct) are a very rich source of lycopene and other carotenoid compounds and contain an essential amount of polyphenols, policosanol, phytosterols, organic acids, dietary fibers, minerals, and vitamins. TP is a promising source of significant bioactive compounds with antioxidant and antimicrobial potential. Therefore, their consumption is known to be effective in preventing certain chronic diseases. For example, lycopene prevents prostate cancer and acts as a hepatoprotector and genoprotector against mycotoxins, pesticide residues, and heavy metals. Thus, the valorization of TP as a food ingredient can be of great health, economic and environmental interest and contribute to improving nutrition and food security. During the last decades, considerable efforts have been made to valorize TP as a crucial functional ingredient in improving: (i) the nutritional and functional properties, (ii) sensory characteristics and (iii) the shelf life of many foods. The current review aims to update and summarize the knowledge on the recent food applications of TP, particularly its use as a functional ingredient to improve the functional properties and shelf life of foods.

14.
Foods ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832796

RESUMO

Over the last few years, the world has been facing dramatic changes due to a condensed period of multiple crises, including climate change, the COVID-19 pandemic, and the Russian-Ukrainian war. Although different, these consecutive crises share common characteristics (e.g., systemic shocks and non-stationary nature) and impacts (e.g., disruption of markets and supply chains), questioning food safety, security, and sustainability. The current article analyses the effects of the noted crises in the food sector before proposing target mitigation measures to address the different challenges. The goal is to transform the food systems to increase their resilience and sustainability. This goal can only be achieved if all relevant actors within the supply chain (e.g., governments, companies, distributors, farmers, etc.) play their role by designing and implementing target interventions and policies. In addition, the transformation of the food sector should be proactive concerning food safety, circular (valorizing several bioresources under the principles of climate neutral economy and blue bioeconomy), digital (based on Industry 4.0 applications), and inclusive (ensuring that all citizens are actively engaged). Food production modernization (e.g., by implementing emerging technologies) and developing shorter and more domestic supply chains are also critical to achieving food resilience and security.

15.
ACS Omega ; 8(1): 1486-1495, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643507

RESUMO

This study examined the amino-acid profile, secondary structure, and physicochemical and functional properties of proteins isolated from Anatolian chickpea landraces. Secondary objective of the study was to determine whether a relationship exists between the amino-acid composition and physicochemical and functional properties. Aspartic acid and glutamic acid were the dominant amino acids, while the isolates were deficient in methionine. Secondary structures were determined by Fourier transform infrared spectroscopy, where the ß-sheet was shown to be dominant. The denaturation temperature of the isolates was between 87 and 145 °C, and the highest net surface charge (≃28.6 mV) and solubility (∼95.0%) were observed at pH 9.0-10.0. The isolates' water-holding capacity varied between 2.1 and 2.7 g water/g protein, whereas their oil-holding capacity ranged between 3.4 and 4.4 g oil/g protein. Emulsion capacity, emulsifying activity, and the stability indices of isolates were found to be between 401.2 and 469.1 g oil/g protein, 14.5 and 25.7 m2/g, and 45.7 and 146.9 min, respectively. Isolates of Hisar and Erzincan chickpeas exhibited good emulsifying properties. The Yasa isolate had a relatively high hydrophobic amino-acid content and delivered the best gelation performance. Overall, significant differences in the characteristics of proteins were observed among the different chickpea landraces studied.

16.
J Pharm Biomed Anal ; 223: 115113, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36327579

RESUMO

The present study aims to investigate the digestive process (gastric and intestinal phases) effects on the survivability of total and individual phenolic compounds, and the in vitro health-related bioactive properties of four high-quality and commonly consumed dates (Phoenix dactylifera) varieties (Safawi, Khalas, Khudri, and Booman). Phenolic compounds were analyzed by HPLC-UV (at 275 nm) and a higher amount of phenolics were identified in Khalas and Booman intestinal digested extracts, compared to the other date varieties-based extracts, which corroborates with the total phenolic contents in those samples, with respective values of 186.5 and 358.14 mg GAE/100 g. Considering their bioactive potentialities, the highest DPPH radical scavenging activities, of around 320 TEAC µg/mL, were observed with Khalas and Khudri gastric extracts. In contrast, Khalas intestinal extract displayed the highest ABTS radical scavenging potential of 969 TEAC µg/mL. Moreover, the Safawi intestinal extract, along with Khalas and Booman gastric extracts, showed the highest increase in the α-glucosidase inhibition activity, compared to the other date varieties-based extracts. Safawi and Khalas intestinal extracts displayed the highest DPP-IV inhibition activities (IC50 of 2.85 µg/mL). Additionally, regarding the pancreatic lipase and cholesterol esterase inhibition, Khudri and Khalas varieties after intestinal digestion demonstrated the highest activities. These results suggested that the Khalas variety showed more potent bioactive properties than other date varieties, mainly related to the variations in the phenolic content between date varieties. Overall, this study provides additional insight into investigating these dates varieties upon their simulated gastro-intestinal digestion and exhibition of multifunctional bioactive properties.


Assuntos
Phoeniceae , Phoeniceae/química , Antioxidantes/química , Frutas/química , Fenóis/química , Extratos Vegetais/química , Suplementos Nutricionais , Digestão
17.
Plant Physiol Biochem ; 200: 107764, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245494

RESUMO

Nowadays, the development of suitable strategies for the management and valorization of agri-food products is one of the most important challenges worldwide. In this context, the current research study aimed to explore a valorization strategy for different varieties (Khalas, Jabri, Lulu, Booman, and Sayer) of low-grade date fruit by extracting polyphenolic compounds and investigating their health-promoting bioactive properties. The generated extracts were comparatively analyzed for their phenolic contents, antioxidant, anti-inflammatory, anti-hemolytic, and enzyme inhibitory activities upon in vitro simulated gastrointestinal digestion (SGID). The total phenolic contents (TPC) ranged from 217.3 to 1846.9 mg GAE/100 g fresh weight. After complete SGID, the TPC remarkably increased from 570.8 mg GAE/100 g fresh weight (undigested), reaching the highest value of 1606.3 mg GAE/100 g fresh weight with the Khalas cultivar. Overall, gastric and complete-SGID-treated extracts exhibited higher antioxidant activities, compared to the undigested extracts for the five selected date varieties. Similarly, the gastric and complete SGID promoted the release of bioactive components endowed with significantly higher inhibition levels towards digestive enzymes related to diabetes. Moreover, extracts from all varieties revealed an increase in the inhibition of lipidemic-related enzymatic markers and anti-inflammatory activities when subjected to the gastric digestion phase, which decreased after complete SGID. Principal component analysis (PCA) suggested that higher bioactive properties were influenced by the TPC present in the samples. Overall, low-quality dates could be considered as a potential source of bioactive polyphenols with interesting nutraceutical properties, released upon their transit through the gastrointestinal tract.


Assuntos
Antioxidantes , Phoeniceae , Antioxidantes/farmacologia , Antioxidantes/análise , Frutas/química , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Digestão
18.
Foods ; 11(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053973

RESUMO

This review article revises the sustainable practices and applications to valorize valuable components recovered from cereal processing by-products. After introducing cereal processing by-products, their healthy compounds, and corresponding functional properties, the article explores reutilization opportunities of by-products emphasizing specific sources (e.g., oat and wheat bran, distillers' dried grains, etc.) and the biorefinery approach. Proteins and soluble dietary fibers such as arabinoxylans are of particular interest due to their content in the cereal processing by-products and their easy extraction based on conventional technologies such as enzyme-assisted extraction and membrane filtration. Non-thermal technologies have also been suggested to improve sustainability recovery approaches. Finally, the article discusses the different applications for the recovered high-added value compounds that span across biotechnology, foods, and bakery products.

19.
Food Chem ; 373(Pt B): 131486, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34800818

RESUMO

Cottage cheese, extensively consumed worldwide, contains coagulated milk protein (casein), produced through boiling and acidification of milk. Casein forms amyloid or amyloid-like structures at high temperatures and low pH. Due to the similarities in the preparation of casein amyloids and cottage cheese, we hypothesized the presence of amyloid or amyloid-like protein aggregates in cottage cheese. To examine this hypothesis, cottage cheese was prepared from cow (Bos indicus) milk and isolated amyloids through a water extraction method. The isolated protein aggregates displayed typical characteristics of amyloids, such as a bathochromic shift in the wavelength of maximum absorption (λmax) of Congo red (CR), high thioflavin T (ThT) binding, increased surface hydrophobicity, and high ß-sheet structure. However, they did not show antibacterial activity and toxic properties against erythrocytes. Our study revealed that the heat-treatment and subsequent acidification during cottage cheese preparation lead to the formation of non-toxic amyloid-like aggregates.


Assuntos
Queijo , Proteínas Amiloidogênicas , Animais , Caseínas , Bovinos , Feminino , Leite , Proteínas do Leite , Agregados Proteicos
20.
Sci Total Environ ; 808: 152180, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34883168

RESUMO

The spread of the COVID-19 pandemic has generated a health crisis and repetitive lockdowns that disrupted different economic and societal segments. As the world has placed hope on the vaccination progress to bring back the socio-economic "normal," this article explores how the bioeconomy can enhance the resilience and sustainability of bio-based, food, and energy systems in the post-COVID-19 era. The proposed recovery approach integrates technological innovations, environment, ecosystem services, "biocities," food, rural economies, and tourism. The importance of integrating culture, arts, and the fashion industry as part of the recovery is underlined towards building a better bioeconomy that, together with environmental safeguards, promotes socio-cultural and economic innovations. This integration could be achieved supporting communities and stakeholders to diversify their activities by combining sustainable production with decarbonization, stimulating private investments in this direction and monitoring the resulting impact of mitigation measures. Food systems should become more resilient in order to allow adapting rapidly to severe crises and future shocks, while it is important to increase circularity towards the valorization of waste, the integration of different processes within the biorefinery concept and the production of bio-based products and biofuels.


Assuntos
COVID-19 , Pandemias/economia , COVID-19/economia , Controle de Doenças Transmissíveis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA