Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Langmuir ; 39(1): 495-506, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36529944

RESUMO

New antimicrobial agents are needed to address the ever-growing risk of bacterial resistance, particularly for methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus). Here, we report a class of bile acid oligomers as facial amphiphilic antimicrobials, which are noncovalently fabricated by cholic acid (CA) and deoxycholic acid (DCA) with polyamines (e.g., diamines, diethylenetriamine, spermidine, and spermine). The antibacterial activities of these bile acid oligomers (CA/polyamines and DCA/polyamines) against S. aureus become stronger with increasing the amine group numbers of polyamines without obviously enhanced cytotoxicity and skin irritation. DCA/spermine, entirely composed of natural products, exhibits the best antibacterial activity but the lowest cytotoxicity and the weakest skin irritation. All CA/polyamines and DCA/polyamines form well-ordered ribbon-like aggregates, collecting numerous facial amphiphilic structures to significantly enhance the interactions with bacterial membranes. In particular, the biogenic polyamines with more than two amine groups provide extra positively charged sites, hence facilitating the binding of bile acid oligomers to the negatively charged outer membrane of the bacteria via electrostatic interaction. This in turn promotes more oligomeric bile acid units that can be inserted into the membrane through hydrophobic interaction between bile acids and lipid domains. The noncovalently constructed and separable amphiphilic antimicrobials can avoid the long-term coexistence of microorganisms and antibacterial molecules in different acting modes. Therefore, the noncovalent bile acid oligomers, especially those with higher oligomerization degrees, can be a potential approach to effectively enhance antibacterial activity, improve environmental friendliness, and reduce bacterial drug resistance.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Ácidos e Sais Biliares/farmacologia , Espermina , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Ácido Cólico/farmacologia , Ácido Cólico/química , Antibacterianos/toxicidade , Antibacterianos/química , Poliaminas/farmacologia , Bactérias
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298219

RESUMO

Polymeric wet-strength agents are important additives used in the paper industry to improve the mechanical properties of paper products, especially when they come into contact with water. These agents play a crucial role in enhancing the durability, strength, and dimensional stability of paper products. The aim of this review is to provide an overview of the different types of wet-strength agents available and their mechanisms of action. We will also discuss the challenges associated with the use of wet-strength agents and the recent advances in the development of more sustainable and environmentally friendly agents. As the demand for more sustainable and durable paper products continues to grow, the use of wet-strength agents is expected to increase in the coming years.


Assuntos
Quitosana , Polímeros , Água
3.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298260

RESUMO

CP12 is a redox-dependent conditionally disordered protein universally distributed in oxygenic photosynthetic organisms. It is primarily known as a light-dependent redox switch regulating the reductive step of the metabolic phase of photosynthesis. In the present study, a small angle X-ray scattering (SAXS) analysis of recombinant Arabidopsis CP12 (AtCP12) in a reduced and oxidized form confirmed the highly disordered nature of this regulatory protein. However, it clearly pointed out a decrease in the average size and a lower level of conformational disorder upon oxidation. We compared the experimental data with the theoretical profiles of pools of conformers generated with different assumptions and show that the reduced form is fully disordered, whereas the oxidized form is better described by conformers comprising both the circular motif around the C-terminal disulfide bond detected in previous structural analysis and the N-terminal disulfide bond. Despite the fact that disulfide bridges are usually thought to confer rigidity to protein structures, in the oxidized AtCP12, their presence coexists with a disordered nature. Our results rule out the existence of significant amounts of structured and compact conformations of free AtCP12 in a solution, even in its oxidized form, thereby highlighting the importance of recruiting partner proteins to complete its structured final folding.


Assuntos
Arabidopsis , Proteínas Intrinsicamente Desordenadas , Arabidopsis/genética , Arabidopsis/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Oxirredução , Dissulfetos/metabolismo , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química
4.
Mol Pharm ; 19(3): 788-797, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170971

RESUMO

Although liposomes are largely investigated as drug delivery systems, they can also exert a pharmacological activity if devoid of an active principle as a function of their composition. Specifically, charged liposomes can electrostatically interact with bacterial cells and, in some cases, induce bacterial cell death. Moreover, they also show a high affinity toward bacterial biofilms. We investigated the physicochemical and antimicrobial properties of liposomes formulated with a natural phospholipid and four synthetic l-prolinol-derived surfactants at 9/1 and 8/2 molar ratios. The synthetic components differ in the nature of the polar headgroup (quaternary ammonium salt or N-oxide) and/or the length of the alkyl chain (14 or 16 methylenes). These differences allowed us to investigate the effect of the molecular structure of liposome components on the properties of the aggregates and their ability to interact with bacterial cells. The antimicrobial properties of the different formulations were assessed against Gram-negative and Gram-positive bacteria and fungi. Drug-drug interactions with four classes of available clinical antibiotics were evaluated against Staphylococcus spp. The target of each class of antibiotics plays a pivotal role in exerting a synergistic effect. Our results highlight that the liposomal formulations with an N-oxide moiety are required for the antibacterial activity against Gram-positive bacteria. In particular, we observed a synergism between oxacillin and liposomes containing 20 molar percentage of N-oxide surfactants onStaphylococcus haemolyticus, Staphylococcus epidermidis, andStaphylococcus aureus. In the case of liposomes containing 20 molar percentage of the N-oxide surfactant with 14 carbon atoms in the alkyl chain for S. epidermidis, the minimum inhibitory concentration was 0.125 µg/mL, well below the breakpoint value of the antibiotic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Lipossomos/química , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Staphylococcus epidermidis , Tensoativos/química , Tensoativos/farmacologia
5.
Phys Chem Chem Phys ; 24(42): 25990-25998, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263861

RESUMO

Anthracycline doxorubicin hydrochloride (DX) is a positively charged fluorescent drug, which in water self-associates into non-fluorescent antiparallel dimers upon increasing concentration and/or ionic strength. The positive charge of DX allows for complexation with negatively charged polymers and drug carriers. The fluorescence of DX following complexation with polyanion polystyrene sulfonate (PSS) is studied here. The fluorescence emission of DX decreases in the presence of PSS, being almost completely quenched when the ratio (R) of PSS monomers-to-DX molecules is larger than 10. Increasing R values over 30 results in a progressive recovery of fluorescence. The circular dichroism of PSS-DX complexes shows inverted characteristic bands of DX dimers suggesting the presence of parallel dimers at a concentration of DX below dimerization in water. Molecular dynamics studies corroborate a preferential orientation of DX into parallel dimers when interacting with PSS and show that DX molecules interact with a binding pocket of PSS monomers rather than with one single monomer. Increasing the ionic strength results in a recovery of fluorescence without an apparent release of DX from the PSS-DX complex as shown by DOSY NMR. PSS acts as a template for concentrating DX, triggering dimerisation and orienting DX molecules with their charged groups facing the negatively charged PSS monomers.


Assuntos
Doxorrubicina , Poliestirenos , Dimerização , Poliestirenos/química , Doxorrubicina/química , Polímeros/química , Água/química
6.
Angew Chem Int Ed Engl ; 61(4): e202113279, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34757695

RESUMO

Condensation of DNA helices into hexagonally packed bundles and toroids represents an intriguing example of functional organization of biological macromolecules at the nanoscale. The condensation models are based on the unique polyelectrolyte features of DNA, however here we could reproduce a DNA-like condensation with supramolecular helices of small chiral molecules, thereby demonstrating that it is a more general phenomenon. We show that the bile salt sodium deoxycholate can form supramolecular helices upon interaction with oppositely charged polyelectrolytes of homopolymer or block copolymers. At higher order, a controlled hexagonal packing of the helices into DNA-like bundles and toroids could be accomplished. The results disclose unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, which inspire visionary ideas of constructing supramolecular versions of biological macromolecules. As drug nanocarriers the polymer-bile salt superstructures would get advantage of a complex chirality at molecular and supramolecular levels, whose effect on the nanocarrier assisted drug efficiency is a still unexplored fascinating issue.


Assuntos
DNA/síntese química , DNA/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação de Ácido Nucleico
7.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579036

RESUMO

Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.


Assuntos
Ácidos e Sais Biliares/metabolismo , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/síntese química , Colesterol/metabolismo , Vesícula Biliar/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo
8.
Langmuir ; 36(29): 8451-8460, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32597180

RESUMO

Within the homologous series of amphiphilic peptides AnK, both A8K and A10K self-assemble in water to form twisted ribbon fibrils with lengths around 100 nm. The structure of the fibrils can be described in terms of twisted ß-sheets extending in the direction of the fibrils, laminated to give a constant cross section of 4 nm by 8 nm. The finite width of the twisted ribbons can be reasonably explained within a simple thermodynamic model, considering a free energy penalty for the stretching of hydrogen bonds along the twisted ß-sheets and an interfacial free energy gain for the lamination of the hydrophobic ß-sheets. In this study, we characterize the self-assembly behavior of these peptides in nonaqueous solutions as a route to probe the role of hydrophobic interaction in fibril stabilization. Both peptides, in methanol and N,N-dimethylformamide, were found to form fibrillar aggregates with the same ß-sheet structure as in water but with slightly smaller cross-sectional sizes. However, the gel-like texture, the slow relaxation in dynamic light scattering experiments, and a correlation peak in the small-angle X-ray scattering pattern highlighted enhanced interfibril interactions in the nonaqueous solvents in the same concentration range. This could be ascribed to a higher effective volume of the aggregates because of enhanced fibril growth and length, as suggested by light scattering and cryogenic transmission electron microscopy analyses. These effects can be discussed considering how the solvent properties affect the different energetic contributions (hydrophobic, electrostatic, and hydrogen bonding) to fibril formation. In the analyzed case, the decreased hydrogen bonding propensity of the nonaqueous solvents makes the hydrogen bond formation along the fibril a key driving force for peptide assembly, whereas it represents a nonrelevant contribution in water.


Assuntos
Peptídeos , Estudos Transversais , Ligação de Hidrogênio , Conformação Proteica em Folha beta , Solventes
9.
Langmuir ; 36(41): 12168-12178, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970443

RESUMO

In the wide panorama of diacetylenic lipids, the photoresponsive conjugated 1,3-diyne function is usually encased into the hydrocarbon chain of the amphiphile at a variable distance from the headgroup. Therefore, the polydiacetylene network obtained by polymerization upon UV irradiation of the corresponding liposomes, exploited as sensing function, is embedded in the hydrophobic region of liposomes. Structurally related cationic diacetylenic amphiphiles featuring the conjugated triple bonds proximate to charged nitrogen were synthesized and evaluated in their ability to polymerize under aggregative conditions. The occurrence of polymerization only in certain aggregating conditions was rationalized by nuclear magnetic resonance (NMR) and Langmuir trough experiments.

10.
Langmuir ; 36(14): 3941-3951, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32118446

RESUMO

Amphipathic peptides are attractive building blocks for the preparation of self-assembling, bio-inspired, and stimuli responsive nanomaterials with pharmaceutical interest. The bioavailability of these materials can be improved with the insertion of d amino acid residues to avoid fast proteolysis in vivo. With this knowledge, a new lauroyl peptide consisting of a sequence of glycine, glycine, d-serine, and d-lysine was designed. In spite of its simple sequence, this lipopeptide self-assembles into spherical micelles at acid pH, when the peptide moiety adopts disordered conformations. Self-aggregates reshape toward fibers at basic pH, following the conformational transition of the peptide region from random coil to ß-sheet. Finally, hydrogels are achieved at basic pH and higher concentrations. The transition from random coil to ß-sheet conformation of the peptide headgroup obtained by increasing pH was monitored by circular dichroism and vibrational spectroscopy. A structural analysis, performed by combining dynamic light scattering, small-angle X-ray scattering, transmission electron microscopy, and molecular dynamic simulations, demonstrated that the transition allows the self-assemblies to remodel from spherical micelles to rodlike shapes, to long fibers with rectangular cross-section and a head-tail-tail-head structure. The viscoelastic behavior of the hydrogels formed at the highest pH was investigated by rheology measurements.


Assuntos
Hidrogéis , Peptídeos , Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio
11.
Langmuir ; 35(21): 6803-6821, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30234994

RESUMO

Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.

12.
Phys Chem Chem Phys ; 21(23): 12518-12529, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31145393

RESUMO

To study the formation and characterize the structure of mixed complexes of oppositely charged block copolymers and surfactants are of great significance for practical applications, e.g., in drug carrier formulations that are based on electrostatically assisted assembly. In this context, biocompatible block copolymers and biosurfactants (like bile salts) are particularly interesting. In this work, we report on the co-assembly in dilute aqueous solution between a cationic poly(N-isopropyl acryl amide) (PNIPAM) diblock copolymer and the oppositely charged bile salt surfactant sodium deoxycholate at ambient temperature. The cryogenic transmission electron microscopy (cryo-TEM) experiments revealed the co-existence of two types of co-assembled complexes of radically different morphology and inner structure. They are formed mainly as a result of the electrostatic attraction between the positively charged copolymer blocks and bile salt anions and highlight the potential of using linear amphiphilic block copolymers as bile salt sequestrants in the treatment of bile acid malabsorption and hypercholesterolemia. The first complex of globular morphology has a coacervate core of deoxycholate anions and charged copolymer blocks surrounded by a PNIPAM corona. The second complex has an intriguing tape-like supramolecular morphology of several micrometer in length that is striped in the direction of the long axis. A model is presented in which the stretched cationic blocks of several block copolymers interact electrostatically with the bile salt molecules that are associated to form a zipper-like structure. The tape is covered on both sides by the PNIPAM chains that stabilize the overall complex in solution. In addition to cryo-TEM, the mixed system was investigated in a range of molar charge fractions at a constant copolymer concentration by static light scattering, small angle X-ray scattering, and electrophoretic mobility measurements.

13.
Chemistry ; 24(32): 8195-8204, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29570884

RESUMO

Anthracyclines self-assemble in water into dimers. In the presence of sufficiently high salt (NaCl) concentrations, solutions of the antibiotic doxorubicin, but not those of the closely related molecules daunomycin and epirubicin, turn into gels barely compatible with the presence of small oligomers. The use of spectroscopic, scattering, imaging and computational techniques, allowed light to be shed on the self-assembly process that triggered doxorubicin gelification. A complex picture emerged, with doxorubicin molecules assembled into long, highly chiral, supramolecular aggregates made of hundreds of units, showing redshifted fluorescence spectra, very short fluorescence lifetimes and small-angle X-ray scattering profiles compatible with long cylinders. The involvement of specific chemical groups and the need for a specific stereochemistry of the monomers in the formation of a hydrogen-bond network to stabilise the supramolecular aggregates was supported by molecular dynamics calculations. A salt-induced, temperature-dependent, cooperative nucleation-elongation supramolecular polymerisation of the doxorubicin molecules is deduced.

14.
Chemistry ; 24(27): 6941-6945, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29573488

RESUMO

The organocatalyzed addition of several malonates to 1,4-benzoquinones affords benzofuranones bearing a quaternary stereocenter with good enantioselectivity. This reaction is an intramolecular desymmetrization since it proceeds through the formation of an arylated achiral malonate that cyclizes to give the reaction product. The addition rate of the quinone dramatically affects the reaction yield which was originally low. The yield was considerably increased, in some cases, from less than 20 % to over 95 %, by adding the quinone in portions rather than at once, keeping similar enantioselectivity. A possible rationalization for the preferential formation of the indicated enantiomer has been investigated by DFT calculations.

15.
Org Biomol Chem ; 16(38): 7041-7049, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30238102

RESUMO

A common problem encountered in enantioselective organocatalysis is the aggregation of the catalyst, which can result in a relevant decrease of the efficiency and selectivity of the process. In the asymmetric synthesis of chiral benzofuranones, recently reported by us, we noted a remarkable increase of the reaction yield upon the addition of one of the reagents in a portionwise manner rather than in a single addition. We investigated this phenomenon by several experimental techniques such as 1D and 2D NMR experiments, UV-Vis spectroscopy, circular dichroism and dynamic light scattering. In addition, we studied the kinetic profile of this reaction using a simple numerical model and carried out in silico investigations. All these different approaches point to the conclusion that in the reaction medium a supramolecular polymerization/aggregation phenomenon, based on weak interactions, occurs and such a process is promoted by a quinone, which is one of the reagents of the benzofuranone synthesis. The portionwise mode of addition is a known strategy which can improve the performance of many synthetic procedures and this strategy is commonly adopted on account of empirical experience. However, our results provide an explanation, based on a chemical kinetic model, of the reason why the portionwise addition affects in such a dramatic way the yield of the benzofuranone synthesis catalyzed by Cinchona alkaloids.

16.
Phys Chem Chem Phys ; 20(28): 18957-18968, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29972162

RESUMO

Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition. Electrophoretic mobility measurements prove that the composition also dictates their superficial charge, which can be tuned from negative to positive by increasing the positively charged surfactant fraction in the mixtures. The study of the catanionic aggregates was conducted by means of microscopy and spectroscopy techniques and compared to the self-assembly behaviors of the individual building blocks. This study broadens the so far small array of bile salt derivative catanionic systems, confirming their distinctive behavior in the spectrum of catanionic mixtures.


Assuntos
Ácidos e Sais Biliares/química , Cátions/química , Nanotubos/química , Ensaio de Desvio de Mobilidade Eletroforética
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2372-85, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627646

RESUMO

Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Transporte/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
18.
Langmuir ; 31(50): 13519-27, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26616587

RESUMO

A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.


Assuntos
Ácidos e Sais Biliares/química , Ácido Glicodesoxicólico/química , Poloxaleno/química , Poloxaleno/síntese química , Água/química , Estrutura Molecular , Soluções
19.
Langmuir ; 31(1): 76-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496076

RESUMO

Anthraquinone compound aloe-emodin (AE) has shown antineoplastic, antibacterial, antiviral, and anti-inflammatory properties and scavenging activity on free radicals. Because of these therapeutic features, AE has been attracting increasing interest and could be applied in the curing of many diseases. However, until now the physicochemical features of this compound have not been fully investigated; furthermore, its wide application might be hindered by its scarce solubility in aqueous media (∼19 µM). The inclusion of AE in nanocarriers, such as cationic liposomes, could allow its delivery effectively and selectively to target sites, reducing side effects in the remaining tissues. In this work, the weak acid nature of AE, because of its two phenolic functions, was exploited to load it remotely in the internal aqueous phase of liposomes in response to a difference in pH between the inside and outside of the liposomes, pHin > pHout. The inclusion of AE in gemini-based cationic liposomes by the acetate gradient method was obtained at high AE/lipid ratios (up to 1:30).


Assuntos
Antraquinonas/química , Lipossomos/química , Compostos de Amônio Quaternário/química , Concentração de Íons de Hidrogênio , Membranas Artificiais , Água/química
20.
Org Biomol Chem ; 13(8): 2437-43, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25553919

RESUMO

The use of micelles to transpose lipophilic receptors, such as uranyl-salophen complexes, into an aqueous environment is a valuable and versatile tool. Receptor 1 incorporated into CTABr micelles forms a supramolecular system that exhibits excellent binding properties towards fluoride in water, despite the competition of the aqueous medium. To fully evaluate the potential of micellar nanodevices, we extended our previous study to other types of surfactants and to a uranyl-salophen receptor with a more extended aromatic surface. Paramagnetic relaxation enhancement experiments were used to obtain information on the location of the two receptors within the micelles and complementary information was obtained from dynamic light scattering experiments. With these data it is possible to account for the key factors necessary to obtain an efficient supramolecular device for anion binding in water.


Assuntos
Fluoretos/química , Nanotecnologia , Salicilatos/química , Água/química , Sítios de Ligação , Micelas , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA