Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Part Fibre Toxicol ; 18(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407654

RESUMO

BACKGROUND: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. RESULTS: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. CONCLUSIONS: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.


Assuntos
Cobalto/toxicidade , Miócitos Cardíacos , Nanopartículas , Óxidos/toxicidade , Animais , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
2.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926042

RESUMO

The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.


Assuntos
Aflatoxinas/química , Aflatoxinas/isolamento & purificação , Aspergillus flavus/química , Aflatoxinas/toxicidade , Antifúngicos/farmacologia , Aspergillus/metabolismo , Aspergillus/patogenicidade , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Produtos Agrícolas/microbiologia , Ecossistema , Contaminação de Alimentos/prevenção & controle , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Humanos , Micotoxinas/toxicidade , Tiossemicarbazonas/química
3.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31014028

RESUMO

In early diabetes, hyperglycemia and the associated metabolic dysregulation promote early changes in the functional properties of cardiomyocytes, progressively leading to the appearance of the diabetic cardiomyopathy phenotype. Recently, the interplay between histone acetyltransferases (HAT) and histone deacetylases (HDAC) has emerged as a crucial factor in the development of cardiac disorders. The present study evaluates whether HDAC inhibition can prevent the development of cardiomyocyte contractile dysfunction induced by a short period of hyperglycemia, with focus on the potential underlying mechanisms. Cell contractility and calcium dynamics were measured in unloaded ventricular myocytes isolated from the heart of control and diabetic rats. Cardiomyocytes were either untreated or exposed to the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) for 90 min. Then, a fraction of each group of cells was used to evaluate the expression levels of proteins involved in the excitation-contraction coupling, and the cardiomyocyte metabolic activity, ATP content, and reactive oxygen species levels. SAHA treatment was able to counteract the initial functional derangement in cardiomyocytes by reducing cell oxidative damage. These findings suggest that early HDAC inhibition could be a promising adjuvant approach for preventing diabetes-induced cardiomyocyte oxidative damage, which triggers the pro-inflammatory signal cascade, mitochondrial damage, and ventricular dysfunction.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Vorinostat/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
4.
Pharmacol Res ; 127: 15-25, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964914

RESUMO

Cardiovascular complications are included among the systemic effects of tyrosine kinase inhibitor (TKI)-based therapeutic strategies. To test the hypothesis that inhibition of Kit tyrosine kinase that promotes cardiac progenitor cell (CPC) survival and function may be one of the triggering mechanisms of imatinib mesylate (IM)-related cardiovascular effects, the anatomical, structural and ultrastructural changes in the heart of IM-treated rats were evaluated. Cardiac anatomy in IM-exposed rats showed a dose-dependent, restrictive type of remodeling and depressed hemodynamic performance in the absence of remarkable myocardial fibrosis. The effects of IM on rat and human CPCs were also assessed. IM induced rat CPC depletion, reduced growth and increased cell death. Similar effects were observed in CPCs isolated from human hearts. These results extend the notion that cardiovascular side effects are driven by multiple actions of IM. The identification of cellular mechanisms responsible for cardiovascular complications due to TKIs will enable future strategies aimed at preserving concomitantly cardiac integrity and anti-tumor activity of advanced cancer treatment.


Assuntos
Cardiomiopatias/induzido quimicamente , Mesilato de Imatinib/toxicidade , Miocárdio/patologia , Células-Tronco/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Miocárdio/ultraestrutura , Ratos
5.
Environ Sci Pollut Res Int ; 30(10): 26178-26190, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36352075

RESUMO

In this study, we assess the DNA damage occurring in response to cadmium (Cd) in the Cd hyperaccumulator Noccaea caerulescens Ganges (GA) vs the non-accumulator and close-relative species Arabidopsis thaliana. At this purpose, the alkaline comet assay was utilized to evaluate the Cd-induced variations in nucleoids and the methy-sens comet assay, and semiquantitative real-time (qRT)-PCR were also performed to associate nucleus variations to possible DNA modifications. Cadmium induced high DNA damages in nuclei of A. thaliana while only a small increase in DNA migration was observed in N. caerulescens GA. In addition, in N. caerulescens GA, CpG DNA methylation increase upon Cd when compared to control condition, along with an increase in the expression of MET1 gene, coding for the DNA-methyltransferase. N. caerulescens GA does not show any oxidative stress under Cd treatment, while A. thaliana Cd-treated plants showed an upregulation of transcripts of the respiratory burst oxidase, accumulation of reactive oxygen species, and enhanced superoxide dismutase activity. These data suggest that epigenetic modifications occur in the N. caerulescens GA exposed to Cd to preserve genome integrity, contributing to Cd tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Thlaspi , Cádmio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Ecótipo , Brassicaceae/metabolismo , Thlaspi/genética , Thlaspi/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Arabidopsis/genética
6.
Br J Nutr ; 107(9): 1324-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22088277

RESUMO

Epidemiological evidence shows that regular consumption of Brassicaceae is associated with a reduced risk of cancer and heart disease. Cruciferous species are usually processed before eating and the real impact of cooking practices on their bioactive properties is not fully understood. We have evaluated the effect of common cooking practices (boiling, microwaving, and steaming) on the biological activities of broccoli, cauliflower and Brussels sprouts. Anti-proliferative and chemoprotective effects towards DNA oxidative damage of fresh and cooked vegetable extracts were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and Comet assays on HT-29 human colon carcinoma cells. The fresh vegetable extracts showed the highest anti-proliferative and antioxidant activities on HT-29 cells (broccoli>cauliflower = Brussels sprouts). No genotoxic activity was detected in any of the samples tested. The cooking methods that were applied influenced the anti-proliferative activity of Brassica extracts but did not alter considerably the antioxidant activity presented by the raw vegetables. Raw, microwaved, boiled (except broccoli) and steamed vegetable extracts, at different concentrations, presented a protective antioxidative action comparable with vitamin C (1 mm). These data provide new insight into the influence of domestic treatment on the quality of food, which could support the recent epidemiological studies suggesting that consumption of cruciferous vegetables, mainly cooked, may be related to a reduced risk of developing cancer.


Assuntos
Anticarcinógenos/química , Antioxidantes/química , Brassica/química , Dano ao DNA , Estresse Oxidativo , Proliferação de Células , Ensaio Cometa , Culinária , Células HT29 , Humanos , Mutagênicos/química , Neoplasias/prevenção & controle , Ciências da Nutrição , Sais de Tetrazólio/química , Tiazóis/química , Verduras
7.
Int J Toxicol ; 31(4): 372-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22710639

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants whose levels have increased in the environment and in human tissues in the past decades. Exposure to PBDEs has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. In spite of their widespread distribution and potential adverse health effects, only few studies have addressed the potential neurotoxicity of PBDEs. In the present study, we evaluated the cyto- and genotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) in human neuroblastoma cells (SK-N-MC). The DNA damage was measured using the alkaline version of the Comet assay, while specific oxidative-generated DNA damage was evaluated by a modified version of the Comet assay with the repair enzyme formamidopyrimidine glycosylase (FPG). The results show that BDE-47 and BDE-209 (5-20 µmol/L) are able to induce DNA damage in human SK-N-MC cells. Pretreatment with the antioxidant melatonin significantly reduced the DNA damage induced by both congeners. The Comet assay carried out in the presence of FPG suggests that both congeners increase purine oxidation. In all cases, BDE-47 was more potent than BDE-209. The results indicate that 2 environmentally relevant PBDEs cause DNA damage which is primarily mediated by the induction of oxidative stress and may contribute to adverse health effects.


Assuntos
Dano ao DNA/efeitos dos fármacos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Bifenil Polibromatos/toxicidade , Linhagem Celular Tumoral , Ensaio Cometa , Humanos , Neuroblastoma/induzido quimicamente , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos
8.
Environ Mol Mutagen ; 62(2): 133-142, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389774

RESUMO

Excess heavy metals affect plant physiology by inducing stress symptoms, however several species have evolved the ability to hyperaccumulate metals in above-ground tissues without phytotoxic effects. In this study we assume that at subcellular level, different strategies were adopted by hyperaccumulator versus the non-accumulator plant species to face the excess of heavy metals. At this purpose the comet assay was used to investigate the nucleoid structure modifications occurring in response to Zn and Cd treatments in the I16 and PL22 populations of the hyperaccumulator Arabidopsis halleri versus the nonaccumulator species Arabidopsis thaliana. Methy-sens comet assay and RT-qPCR were also performed to associate metal induced variations in nucleoids with possible epigenetic modifications. The comet assay showed that Zn induced a mild but non significant reduction in the tail moment in A. thaliana and in both I16 and PL22. Cd treatment induced an increase in DNA migration in nuclei of A. thaliana, whereas no differences in DNA migration was observed for I16, and a significant increase in nucleoid condensation was found in PL22 Cd treated samples. This last population showed higher CpG DNA methylation upon Cd treatment than in control conditions, and an up-regulation of genes involved in symmetric methylation and histone deacetylation. Our data support the hypothesis of a possible role of epigenetic modifications in the hyperaccumulation trait to cope with the high Cd shoot concentrations. In addition, the differences observed between PL22 and I16 could reinforce previous suggestions of divergent strategies for metals detoxification developing in the two metallicolous populations.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Metais Pesados/toxicidade , Ilhas de CpG/genética , DNA/genética , Metilação de DNA/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
Mutat Res Rev Mutat Res ; 787: 108371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34083035

RESUMO

The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge. The aims of hCOMET were to establish reference values for the level of DNA damage in humans, to investigate the effect of host factors, lifestyle and exposure to genotoxic agents, and to compare different sources of assay variability. A database of 19,320 subjects was generated, pooling data from 105 studies run by 44 laboratories in 26 countries between 1999 and 2019. A mixed random effect log-linear model, in parallel with a classic meta-analysis, was applied to take into account the extensive heterogeneity of data, due to descriptor, specimen and protocol variability. As a result of this analysis interquartile intervals of DNA strand breaks (which includes alkali-labile sites) were reported for tail intensity, tail length, and tail moment (comet assay descriptors). A small variation by age was reported in some datasets, suggesting higher DNA damage in oldest age-classes, while no effect could be shown for sex or smoking habit, although the lack of data on heavy smokers has still to be considered. Finally, highly significant differences in DNA damage were found for most exposures investigated in specific studies. In conclusion, these data, which confirm that DNA damage measured by the comet assay is an excellent biomarker of exposure in several conditions, may contribute to improving the quality of study design and to the standardization of results of the comet assay in human populations.


Assuntos
Ensaio Cometa/métodos , Biomarcadores/sangue , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos
10.
Microorganisms ; 8(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096923

RESUMO

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597-609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.

11.
Oxid Med Cell Longev ; 2019: 5692958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467633

RESUMO

Autophagy is a catabolic pathway activated in response to different cellular stressors, such as damaged organelles, accumulation of misfolded or unfolded proteins, ER stress, accumulation of reactive oxygen species, and DNA damage. Some DNA damage sensors like FOXO3a, ATM, ATR, and p53 are known to be important autophagy regulators, and autophagy seems therefore to have a role in DNA damage response (DDR). Recent studies have partly clarified the pathways that induce autophagy during DDR, but its precise role is still not well known. Previous studies have shown that autophagy alterations induce an increase in DNA damage and in the occurrence of tumor and neurodegenerative diseases, highlighting its fundamental role in the maintenance of genomic stability. During DDR, autophagy could act as a source of energy to maintain cell cycle arrest and to sustain DNA repair activities. In addition, autophagy seems to play a role in the degradation of components involved in the repair machinery. In this paper, molecules which are able to induce oxidative stress and/or DNA damage have been selected and their toxic and genotoxic effects on the U937 cell line have been assessed in the presence of the single compounds and in concurrence with an inhibitor (chloroquine) or an inducer (rapamycin) of autophagy. Our data seem to corroborate the fundamental role of this pathway in response to direct and indirect DNA-damaging agents. The inhibition of autophagy through chloroquine had no effect on the genotoxicity induced by the tested compounds, but it led to a high increase of cytotoxicity. The induction of autophagy, through cotreatment with rapamycin, reduced the genotoxic activity of the compounds. The present study confirms the cytoprotective role of autophagy during DDR; its inhibition can sensitize cancer cells to DNA-damaging agents. The modulation of this pathway could therefore be an innovative approach able to reduce the toxicity of many compounds and to enhance the activity of others, including anticancer drugs.


Assuntos
Autofagia/efeitos dos fármacos , Dano ao DNA/genética , Humanos , Estresse Oxidativo
12.
J Proteomics ; 206: 103437, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31271901

RESUMO

The impact of gender and diet on the proteome of Longissimus dorsi was addressed by 2D-PAGE analysis of male and female pigs, fed with a barley-based control diet and a diet enriched with extruded linseed and plant extracts. No statistically significant difference in protein number between female and male samples was found. Furthermore, PCA excluded gender-dependent protein clusters. For both the control and enriched diet, several spots exhibited at least a 1.5-fold intensity difference, but none showed a statistically relevant variation. Protein profiles PCA for both diets indicated that the first two principal components account up to 47% of total variance, with two diet-dependent separated clusters. Among 176 common spots, 29 exhibited >1.5 fold change, mostly more abundant in the control diet. PMF identified 14 distinct proteins, including myofibrillar proteins, glycolytic enzymes and myoglobin, thus suggesting a diet-dependent meat quality. A statistically significant increase in carbonylated proteins of enriched diet samples was detected using the 2,4-dinitrophenylhydrazine method but not using fluorescein-5-thiosemicarbazide-labeled bands. ROS induction and DNA oxidative damage, detected in a human cell line exposed to digested meat from both diets, further support the notion that the enriched diet does not protect against oxidative stress. SIGNIFICANCE: The comparison of the protein profile of female and male Longissimus dorsi from pigs fed by a control diet and a diet enriched with polyphenols, indicate no gender effect, whereas diet affects the abundance of several proteins, possibly linked to meat quality. Protein carbonylation was statistically higher in meat from the enriched diet, suggesting that polyphenols at the concentration present in the diet did not exert a protective effect against oxidation.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Proteínas Alimentares/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Suínos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Dieta , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Feminino , Linho/química , Linho/fisiologia , Masculino , Metaboloma/efeitos dos fármacos , Músculo Esquelético/química , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Caracteres Sexuais , Suínos/metabolismo
13.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1260-1270, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268810

RESUMO

Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Citrobacter freundii/enzimologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
14.
Sci Rep ; 7(1): 10896, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883642

RESUMO

Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activities. Synthetic peptides representing the translated products of J lambda and J heavy genes proved to act in vitro against pathogenic fungi, entering yeast cells and causing their death, and exerted a therapeutic effect in a Galleria mellonella model of infection by Candida albicans. No haemolytic, cytotoxic and genotoxic effects were observed on mammalian cells. These findings raise the hypothesis that antibodies could be the evolutionary result of the adaptive combination of gene products ancestrally devoted to innate antimicrobial immunity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Fungos/efeitos dos fármacos , Fungos/fisiologia , Imunoglobulinas/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/toxicidade , Candidíase/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Modelos Animais de Doenças , Hemólise/efeitos dos fármacos , Lepidópteros , Resultado do Tratamento
15.
Food Chem Toxicol ; 105: 498-505, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28483535

RESUMO

Aflatoxins represent a serious problem for a food economy based on cereal cultivations used to fodder animal and for human nutrition. The aims of our work are two-fold: first, to perform an evaluation of the activity of newly synthesized thiosemicarbazone compounds as antifungal and anti-mycotoxin agents and, second, to conduct studies on the toxic and genotoxic hazard potentials with a battery of tests with different endpoints. In this paper we report an initial study on two molecules: S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazone and its metal complex, bis(S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazonato)nickel (II). The outcome of the assays on fungi growth and aflatoxin production inhibition show that both molecules possess good antifungal activities, without inducing mutagenic effects on bacteria. From the assays to ascertain that the compounds have no adverse effects on human cells, we have found that they are cytotoxic and, in the case of the nickel compound, they also present genotoxic effects.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micotoxinas/metabolismo , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Antifúngicos/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Avaliação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Fungos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutagênicos/efeitos adversos , Mutagênicos/química , Mutagênicos/farmacologia , Tiossemicarbazonas/efeitos adversos
16.
Sci Rep ; 6: 35018, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725769

RESUMO

A phosphorylated peptide, named K40H, derived from the constant region of IgMs was detected in human serum by liquid chromatography coupled to high-resolution mass spectrometry. Synthetic K40H proved to exert a potent in vitro activity against fungal pathogens, and to inhibit HIV-1 replication in vitro and ex vivo. It also showed a therapeutic effect against an experimental infection by Candida albicans in the invertebrate model Galleria mellonella. K40H represents the proof of concept of the innate role that naturally occurring antibody fragments may exert against infectious agents, shedding a new light upon the posthumous role of antibodies and opening a new scenario on the multifaceted functionality of humoral immunity.


Assuntos
Candida albicans/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/sangue , Imunoglobulina M/química , Anti-Infecciosos/sangue , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cromatografia Líquida , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Fosforilação , Replicação Viral/efeitos dos fármacos
17.
J Public Health Res ; 4(3): 613, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26753164

RESUMO

BACKGROUND: In the Po Valley aflatoxins play a relevant role: the local food economy is heavily based on cereal cultivations for animal feed and human nutrition. Aims of this project are the identification of new compounds that inhibit Aspergillus proliferation, the development of new inhibitors of aflatoxins production, and the set-up a practical screening procedure to identify the most effective and safe compounds. DESIGN AND METHODS: New compounds will be synthetized with natural origin molecules as ligands and endogenous metal ions to increase their bioavailability for the fungi as metal complexes. A biotechnological high-throughput screening will be set up to identify efficiently the most powerful substances. The newly synthesized compounds with effective antifungal activities, will be evaluated with battery of tests with different end-points to assess the toxic potential risk for environmental and human health. EXPECTED IMPACT OF THE STUDY FOR PUBLIC HEALTH: The fundamental step in the project will be the synthesis of new compounds and the study of their capability to inhibit aflatoxin biosynthesis. A new, simple, inexpensive and high-throughput method to screen the anti-fungine and anti-mycotoxin activity of the new synthesised compounds will be applied. The evaluation of possible risks for humans due to toxic and genotoxic activities of the molecules will be made with a new approach using different types of cells (bacteria, plants and human cells). Significance for public healthAflatoxins contamination constitutes a health emergency because aflatoxins and mycotoxins, besides being toxic, are among the most carcinogenic substances known. Even if Aspergillus are dominant in tropical regions, recently are becoming a serious problem also in Europe and in Italy, especially in area as the Po Valley in which this problem play a particularly important role, because the local food economy is heavily based not only on cereal cultivations aimed at animal feed but also on the production of derivatives to human nutrition. The aims of this research are the development of new bioactive molecules, obtained by natural molecules and metal ions, that are able to reduce the risk of food contamination by aflatoxin, but are harmless for environmental and health and the evaluation of the newly synthesized compounds using a battery of tests with different end-points to assess the toxic potential risk for environmental and human health.

18.
PLoS One ; 7(3): e34105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470523

RESUMO

Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.


Assuntos
Anticorpos/química , Antifúngicos/farmacologia , Peptídeos/farmacologia , Animais , Anticorpos/metabolismo , Antifúngicos/química , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Caspofungina , Cryptococcus neoformans/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Fúngica/efeitos dos fármacos , Equinocandinas/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise , Humanos , Imunoglobulina A/química , Imunoglobulina A/metabolismo , Regiões Constantes de Imunoglobulina , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina M/química , Imunoglobulina M/metabolismo , Lipopeptídeos , Malassezia/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/uso terapêutico , Triazóis/farmacologia
19.
Cardiovasc Hematol Agents Med Chem ; 8(1): 55-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20210776

RESUMO

Cardiovascular diseases and cancer represent respectively the first and second cause of death in industrialized countries. These two conditions may become synergistic when cardiovascular complications of anti-cancer therapy are considered. More than 70% of childhood and 50% of adult cancer patients can be cured, however this important success obtained by the biological and medical research is obfuscated by emerging findings of early and late morbidity due to cardiovascular events. Although anthracyclines are effective drugs against cancer a dose-dependent cardiotoxic effects whose mechanism has not been elucidated resulting in failure of therapeutic interventions limit their use. Unexpectedly, tyrosine/kinase inhibitors (TKIs) aimed at molecularly interfering with oncogenic pathways, have been implicated in cardiac side effects. Possible explanations of this phenomenon have been ambiguous, further strengthening the need to deepen our understanding on the mechanism of cardiotoxicity. In addition to a detailed description of anthracyclines and TKIs-related cardiovascular effects, the present review highlights recent observations supporting the hypothesis that the cellular target of anthracyclines and TKIs may include myocardial compartments other than parenchymal cells. The demonstration that the adult mammalian heart possesses a cell turnover regulated by primitive cells suggests that this cell population may be implicated in the onset and development of cardiovascular effects of anti-cancer strategies. The possibility of preventing cardiotoxicity by preservation and/or expansion of the resident stem cell pool responsible for cardiac repair may open new therapeutic options to unravel an unsolved clinical issue.


Assuntos
Antraciclinas/efeitos adversos , Antineoplásicos/efeitos adversos , Cardiotoxinas/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Humanos , Miocárdio/citologia , Miocárdio/patologia , Neoplasias/tratamento farmacológico , Células-Tronco/efeitos dos fármacos
20.
J Parasitol Res ; 2009: 463575, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20981287

RESUMO

Nitroheterocyclic compounds are widely used as therapeutic agents against a variety of protozoan and bacterial infections. However, the literature on these compounds, suspected of being carcinogens, is widely controversial. In this study, cytotoxic and genotoxic potential of three drugs, Nifurtimox (NFX), Benznidazole (BNZ), and Metronidazole (MTZ) was re-evaluated by different assays. Only NFX reduces survival rate in actively proliferating cells. The compounds are more active for base-pair substitution than frameshift induction in Salmonella; NFX and BNZ are more mutagenic than MTZ; they are widely dependent from nitroreduction whereas microsomal fraction S9 weakly affects the mutagenic potential. Comet assay detects BNZ- and NFX-induced DNA damage at doses in the range of therapeutically treated patient plasma concentration; BNZ seems to mainly act through ROS generation whereas a dose-dependent mechanism of DNA damaging is suggested for NFX. The lack of effects on mammalian cells for MTZ is confirmed also in MN assay whereas MN induction is observed for NFX and BNZ. The effects of MTZ, that shows comparatively low reduction potential, seem to be strictly dependent on anaerobic/hypoxic conditions. Both NFX and BNZ may not only lead to cellular damage of the infective agent but also interact with the DNA of mammalian cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA