Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neurobiol Dis ; 199: 106576, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914173

RESUMO

Variability in disease onset and progression is a hallmark of amyotrophic lateral sclerosis (ALS), both in sporadic and genetic forms. Recently, we found that SOD1-G93A transgenic mice expressing the same amount of mutant SOD1 but with different genetic backgrounds, C57BL/6JOlaHsd and 129S2/SvHsd, show slow and rapid muscle wasting and disease progression, respectively. Here, we investigated the different molecular mechanisms underlying muscle atrophy. Although both strains showed similar denervation-induced degradation of muscle proteins, only the rapidly progressing mice exhibited early and sustained STAT3 activation that preceded atrophy in gastrocnemius muscle. We therefore investigated the therapeutic potential of sunitinib, a tyrosine kinase inhibitor known to inhibit STAT3 and prevent cancer-induced muscle wasting. Although sunitinib treatment reduced STAT3 activation in the gastrocnemius muscle and lumbar spinal cord, it did not preserve spinal motor neurons, improve neuromuscular impairment, muscle atrophy and disease progression in the rapidly progressing SOD1-G93A mice. Thus, the effect of sunitinib is not equally positive in different diseases associated with muscle wasting. Moreover, given the complex role of STAT3 in the peripheral and central compartments of the neuromuscular system, the present study suggests that its broad inhibition may lead to opposing effects, ultimately preventing a potential positive therapeutic action in ALS.

2.
Biochem Soc Trans ; 50(5): 1489-1503, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36111809

RESUMO

Motor neuron diseases (MNDs) include a broad group of diseases in which neurodegeneration mainly affects upper and/or lower motor neurons (MNs). Although the involvement of specific MNs, symptoms, age of onset, and progression differ in MNDs, the main pathogenic mechanism common to most MNDs is represented by proteostasis alteration and proteotoxicity. This pathomechanism may be directly related to mutations in genes encoding proteins involved in the protein quality control system, particularly the autophagy-lysosomal pathway (ALP). Alternatively, proteostasis alteration can be caused by aberrant proteins that tend to misfold and to aggregate, two related processes that, over time, cannot be properly handled by the ALP. Here, we summarize the main ALP features, focusing on different routes utilized to deliver substrates to the lysosome and how the various ALP pathways intersect with the intracellular trafficking of membranes and vesicles. Next, we provide an overview of the mutated genes that have been found associated with MNDs, how these gene products are involved in different steps of ALP and related processes. Finally, we discuss how autophagy can be considered a valid therapeutic target for MNDs treatment focusing on traditional autophagy modulators and on emerging approaches to overcome their limitations.


Assuntos
Lisossomos , Doença dos Neurônios Motores , Humanos , Autofagia/fisiologia , Lisossomos/metabolismo , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Proteostase
3.
Neuropathol Appl Neurobiol ; 48(5): e12818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35501124

RESUMO

AIM: Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS: By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS: We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION: Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Autofagia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lisossomos/metabolismo , Neurônios Motores/metabolismo , Ativação Transcricional , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
4.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216053

RESUMO

Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.


Assuntos
Autofagia/fisiologia , Proteína com Valosina/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteostase/fisiologia
5.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233058

RESUMO

Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.


Assuntos
Proteínas de Choque Térmico Pequenas , Doença dos Neurônios Motores , Deficiências na Proteostase , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Deficiências na Proteostase/metabolismo
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073630

RESUMO

Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients' sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Bulboespinal Ligada ao X , MicroRNAs , Mutação de Sentido Incorreto , Superóxido Dismutase-1 , Superóxido Dismutase , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414108

RESUMO

BACKGROUND: Accumulation of misfolded proteins is a common hallmark of several neurodegenerative disorders (NDs) which results from a failure or an impairment of the protein quality control (PQC) system. The PQC system is composed by chaperones and the degradative systems (proteasome and autophagy). Mutant proteins that misfold are potentially neurotoxic, thus strategies aimed at preventing their aggregation or at enhancing their clearance are emerging as interesting therapeutic targets for NDs. METHODS: We tested the natural alkaloid berberine (BBR) and some derivatives for their capability to enhance misfolded protein clearance in cell models of NDs, evaluating which degradative pathway mediates their action. RESULTS: We found that both BBR and its semisynthetic derivatives promote degradation of mutant androgen receptor (ARpolyQ) causative of spinal and bulbar muscular atrophy, acting mainly via proteasome and preventing ARpolyQ aggregation. Overlapping effects were observed on other misfolded proteins causative of amyotrophic lateral sclerosis, frontotemporal-lobar degeneration or Huntington disease, but with selective and specific action against each different mutant protein. CONCLUSIONS: BBR and its analogues induce the clearance of misfolded proteins responsible for NDs, representing potential therapeutic tools to counteract these fatal disorders.


Assuntos
Berberina/farmacologia , Produtos Biológicos/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Deficiências na Proteostase/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia
8.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560258

RESUMO

Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed, in order to foster new approaches to treat ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ácido Glutâmico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação da Expressão Gênica , Humanos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Neuroglia/metabolismo , Transdução de Sinais
9.
Hum Mol Genet ; 24(1): 64-75, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25122660

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex(®)), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA.


Assuntos
Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Atrofia Bulboespinal Ligada ao X/metabolismo , Neurônios Motores/metabolismo , Nitrilas/farmacologia , Receptores Androgênicos/metabolismo , Compostos de Tosil/farmacologia , Trealose/farmacologia , Animais , Autofagia , Atrofia Bulboespinal Ligada ao X/genética , Linhagem Celular , Sinergismo Farmacológico , Humanos , Mutação , Células PC12 , Transporte Proteico/efeitos dos fármacos , Ratos , Receptores Androgênicos/genética
10.
J Endocrinol Invest ; 37(8): 729-737, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24916565

RESUMO

INTRODUCTION: 3-betahydroxysterol delta-24-reductase (DHCR24), also called selective Alzheimer's disease indicator-1, is a crucial enzyme in cholesterol biosynthesis with neuroprotective properties that is downregulated in brain areas affected by Alzheimer's disease. AIM: In the present study, we investigated modifications of DHCR24 expression in models of Huntington's disease (HD), a neurodegenerative disorder caused by a polyglutamine expansion in huntingtin (Htt) protein that induces degeneration of cerebral cortex and striatum as well as lateral hypothalamic abnormality. METHODS: Basal expression of DHCR24 and its modulation after oxidative stress were evaluated in rat striatal precursors cells (ST14A) transfected with wild-type (Htt) or mutant Htt (mHtt) and in brain tissue of an HD mouse model (R6/2). RESULTS: The results showed that DHCR24 transcript levels were decreased in ST14A cells expressing mHtt and in the brain of symptomatic R6/2 mice, but were significantly increased in ST14A cells overexpressing wild-type Htt. In addition, we demonstrated that, in the striatal precursors, the decrease of DHCR24 expression in response to oxidative stress was modified according to the presence of Htt or of its mutant form. Preliminary results indicated a modification of DHCR24 expression in post-mortem brain samples of HD patients. CONCLUSIONS: In conclusion, these results support the hypothesis of a possible role of DHCR24 in HD.


Assuntos
Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , Doença de Huntington/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Adulto , Idoso , Animais , Encéfalo/metabolismo , Linhagem Celular , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Lobo Parietal/enzimologia , Lobo Parietal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Repetições de Trinucleotídeos
11.
Biochem Soc Trans ; 41(6): 1598-604, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256261

RESUMO

ALS (amyotrophic lateral sclerosis), a fatal motoneuron (motor neuron) disease, occurs in clinically indistinguishable sporadic (sALS) or familial (fALS) forms. Most fALS-related mutant proteins identified so far are prone to misfolding, and must be degraded in order to protect motoneurons from their toxicity. This process, mediated by molecular chaperones, requires proteasome or autophagic systems. Motoneurons are particularly sensitive to misfolded protein toxicity, but other cell types such as the muscle cells could also be affected. Muscle-restricted expression of the fALS protein mutSOD1 (mutant superoxide dismutase 1) induces muscle atrophy and motoneuron death. We found that several genes have an altered expression in muscles of transgenic ALS mice at different stages of disease. MyoD, myogenin, atrogin-1, TGFß1 (transforming growth factor ß1) and components of the cell response to proteotoxicity [HSPB8 (heat shock 22kDa protein 8), Bag3 (Bcl-2-associated athanogene 3) and p62] are all up-regulated by mutSOD1 in skeletal muscle. When we compared the potential mutSOD1 toxicity in motoneuron (NSC34) and muscle (C2C12) cells, we found that muscle ALS models possess much higher chymotryptic proteasome activity and autophagy power than motoneuron ALS models. As a result, mutSOD1 molecular behaviour was found to be very different. MutSOD1 clearance was found to be much higher in muscle than in motoneurons. MutSOD1 aggregated and impaired proteasomes only in motoneurons, which were particularly sensitive to superoxide-induced oxidative stress. Moreover, in muscle cells, mutSOD1 was found to be soluble even after proteasome inhibition. This effect could be associated with a higher mutSOD1 autophagic clearance. Therefore muscle cells seem to manage misfolded mutSOD1 more efficiently than motoneurons, thus mutSOD1 toxicity in muscle may not directly depend on aggregation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Músculos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Neurônios Motores/patologia , Músculos/patologia , Superóxido Dismutase/química , Superóxido Dismutase-1
12.
Life Sci ; 322: 121323, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574942

RESUMO

AIMS: The small Heat Shock Protein B8 (HSPB8) is the core component of the Chaperone-Assisted Selective Autophagy (CASA) complex. This complex selectively targets, transports, and tags misfolded proteins for their recognition by autophagy receptors and insertion into the autophagosome for clearance. CASA is essential to maintain intracellular proteostasis, especially in heart, muscle, and brain often exposed to various types of cell stresses. In neurons, HSPB8 protects against neurotoxicity caused by misfolded proteins in several models of neurodegenerative diseases; by facilitating autophagy, HSPB8 assists misfolded proteins degradation also counteracting proteasome overwhelming and inhibition. MATERIALS AND METHODS: To enhance HSPB8 protective activity, we screened a library of approximately 120,000 small molecules to identify compounds capable of increasing HSPB8 gene transcription, translation, or protein stability. KEY FINDINGS: We found 83 active compounds active in preliminary dose-response assays and further classified them in 19 chemical classes by medicinal chemists' visual inspection. Of these 19 prototypes, 14 induced HSPB8 mRNA and protein levels in SH-SY5Y cells. Out of these 14 compounds, 3 successfully reduced the aggregation propensity of a disease-associated mutant misfolded superoxide dismutase 1 (SOD1) protein in a flow cytometry-based aggregation assay (Flow cytometric analysis of Inclusions and Trafficking (FloIT)) and induced the expression (mRNA and protein) of some autophagy receptors. Notably, the 3 hits were inactive in HSPB8-depleted cells, confirming that their protective activity is mediated by and requires HSPB8. SIGNIFICANCE: These compounds may be highly relevant for a therapeutic approach in several human disorders, including neurodegenerative diseases, in which enhancement of CASA exerts beneficial activities.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Autofagia/fisiologia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios Motores/metabolismo , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína
13.
Autophagy ; 19(8): 2217-2239, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854646

RESUMO

Chaperone-assisted selective autophagy (CASA) is a highly selective pathway for the disposal of misfolding and aggregating proteins. In muscle, CASA assures muscle integrity by favoring the turnover of structural components damaged by mechanical strain. In neurons, CASA promotes the removal of aggregating substrates. A crucial player of CASA is HSPB8 (heat shock protein family B (small) member 8), which acts in a complex with HSPA, their cochaperone BAG3, and the E3 ubiquitin ligase STUB1. Recently, four novel HSPB8 frameshift (fs) gene mutations have been linked to neuromyopathies, and encode carboxy-terminally mutated HSPB8, sharing a common C-terminal extension. Here, we analyzed the biochemical and functional alterations associated with the HSPB8_fs mutant proteins. We demonstrated that HSPB8_fs mutants are highly insoluble and tend to form proteinaceous aggregates in the cytoplasm. Notably, all HSPB8 frameshift mutants retain their ability to interact with CASA members but sequester them into the HSPB8-positive aggregates together with two autophagy receptors SQSTM1/p62 and TAX1BP1. This copartitioning process negatively affects the CASA capability to remove its clients and causes a general failure in proteostasis response. Further analyses revealed that the aggregation of the HSPB8_fs mutants occurs independently of the other CASA members or from the autophagy receptors interaction, but it is an intrinsic feature of the mutated amino acid sequence. HSPB8_fs mutants aggregation alters the differentiation capacity of muscle cells and impairs sarcomere organization. Collectively, these results shed light on a potential pathogenic mechanism shared by the HSPB8_fs mutants described in neuromuscular diseases.Abbreviations : ACD: α-crystallin domain; ACTN: actinin alpha; BAG3: BAG cochaperone 3; C: carboxy; CASA: chaperone-assisted selective autophagy; CE: carboxy-terminal extension; CLEM: correlative light and electron microscopy; CMT2L: Charcot-Marie-Tooth type 2L; CTR: carboxy-terminal region; dHMNII: distal hereditary motor neuropathy type II; EV: empty vector; FRA: filter retardation assay; fs: frameshift; HSPA/HSP70: heat shock protein family A (Hsp70); HSPB1/Hsp27: heat shock protein family B (small) member 1; HSPB8/Hsp22: heat shock protein family B (small) member 8; HTT: huntingtin; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MTOC: microtubule organizing center; MYH: myosin heavy chain; MYOG: myogenin; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; NSC34: Neuroblastoma X Spinal Cord 34; OPTN: optineurin; polyQ: polyglutamine; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TAX1BP1: Tax1 binding protein 1; TUBA: tubulin alpha; WT: wild-type.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Neuromusculares , Humanos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Proteínas de Choque Térmico/metabolismo , Doença de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
14.
Neurotherapeutics ; 20(2): 524-545, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717478

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is characterized by motor neuron (MN) degeneration that leads to slowly progressive muscle weakness. It is considered a neuromuscular disease since muscle has a primary role in disease onset and progression. SBMA is caused by a CAG triplet repeat expansion in the androgen receptor (AR) gene. The translated poly-glutamine (polyQ) tract confers a toxic gain of function to the mutant AR altering its folding, causing its aggregation into intracellular inclusions, and impairing the autophagic flux. In an in vitro SBMA neuronal model, we previously showed that the antiandrogen bicalutamide and trehalose, a natural disaccharide stimulating autophagy, block ARpolyQ activation, reduce its nuclear translocation and toxicity and facilitate the autophagic degradation of cytoplasmic AR aggregates. Here, in a knock-in SBMA mouse model (KI AR113Q), we show that bicalutamide and trehalose ameliorated SBMA pathology. Bicalutamide reversed the formation of the AR insoluble forms in KI AR113Q muscle, preventing autophagic flux blockage. We demonstrated that apoptosis is activated in KI AR113Q muscle, and that both compounds prevented its activation. We detected a decrease of mtDNA and an increase of OXPHOS enzymes, already at early symptomatic stages; these alterations were reverted by trehalose. Overall, bicalutamide and/or trehalose led to a partial recovery of muscle morphology and function, and improved SBMA mouse motor behavior, inducing an extension of their survival. Thus, bicalutamide and trehalose, by counteracting ARpolyQ toxicity in skeletal muscle, are valuable candidates for future clinical trials in SBMA patients.


Assuntos
Atrofia Bulboespinal Ligada ao X , Atrofia Muscular Espinal , Camundongos , Animais , Atrofia Bulboespinal Ligada ao X/tratamento farmacológico , Atrofia Bulboespinal Ligada ao X/genética , Trealose/farmacologia , Trealose/uso terapêutico , Receptores Androgênicos/genética , Anilidas/farmacologia , Camundongos Transgênicos
15.
Hum Mol Genet ; 19(17): 3440-56, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570967

RESUMO

Several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), are characterized by the presence of misfolded proteins, thought to trigger neurotoxicity. Some familial forms of ALS (fALS), clinically indistinguishable from sporadic ALS (sALS), are linked to superoxide dismutase 1 (SOD1) gene mutations. It has been shown that the mutant SOD1 misfolds, forms insoluble aggregates and impairs the proteasome. Using transgenic G93A-SOD1 mice, we found that spinal cord motor neurons, accumulating mutant SOD1 also over-express the small heat shock protein HspB8. Using motor neuronal fALS models, we demonstrated that HspB8 decreases aggregation and increases mutant SOD1 solubility and clearance, without affecting wild-type SOD1 turnover. Notably, HspB8 acts on mutant SOD1 even when the proteasome activity is specifically blocked. The pharmacological blockage of autophagy resulted in a dramatic increase of mutant SOD1 aggregates. Immunoprecipitation studies, performed during autophagic flux blockage, demonstrated that mutant SOD1 interacts with the HspB8/Bag3/Hsc70/CHIP multiheteromeric complex, known to selectively activate autophagic removal of misfolded proteins. Thus, HspB8 increases mutant SOD1 clearance via autophagy. Autophagy activation was also observed in lumbar spinal cord of transgenic G93A-SOD1 mice since several autophago-lysosomal structures were present in affected surviving motor neurons. Finally, we extended our observation to a different ALS model and demonstrated that HspB8 exerts similar effects on a truncated version of TDP-43, another protein involved both in fALS and in sALS. Overall, these results indicate that the pharmacological modulation of HspB8 expression in motor neurons may have important implications to unravel the molecular mechanisms involved both in fALS and in sALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Autofagia , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1
16.
Pharmacol Res ; 65(2): 221-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178654

RESUMO

Anabolic/androgenic steroids (AAS) are drugs that enhance muscle mass, and are often illegally utilized in athletes to improve their performances. Recent data suggest that the increased risk for amyotrophic lateral sclerosis (ALS) in male soccer and football players could be linked to AAS abuse. ALS is a motor neuron disease mainly occurring in sporadic (sALS) forms, but some familial forms (fALS) exist and have been linked to mutations in different genes. Some of these, in their wild type (wt) form, have been proposed as risk factors for sALS, i.e. superoxide dismutase 1 (SOD1) gene, whose mutations are causative of about 20% of fALS. Notably, SOD1 toxicity might occur both in motor neurons and in muscle cells. Using gastrocnemius muscles of mice overexpressing human mutant SOD1 (mutSOD1) at different disease stages, we found that the expression of a selected set of genes associated to muscle atrophy, MyoD, myogenin, atrogin-1, and transforming growth factor (TGF)ß1, is up-regulated already at the presymptomatic stage. Atrogin-1 gene expression was increased also in mice overexpressing human wtSOD1. Similar alterations were found in axotomized mouse muscles and in cultured ALS myoblast models. In these ALS models, we then evaluated the pharmacological effects of the synthetic AAS nandrolone on the expression of the genes modified in ALS muscle. Nandrolone administration had no effects on MyoD, myogenin, and atrogin-1 expression, but it significantly increased TGFß1 expression at disease onset. Altogether, these data suggest that, in fALS, muscle gene expression is altered at early stages, and AAS may exacerbate some of the alterations induced by SOD1 possibly acting as a contributing factor also in sALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expressão Gênica/efeitos dos fármacos , Mutação , Nandrolona/farmacologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Anabolizantes/farmacologia , Androgênios/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteína MyoD/biossíntese , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/biossíntese , Miogenina/genética , Miogenina/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159325

RESUMO

Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Vesículas Extracelulares , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
18.
Biochim Biophys Acta ; 1801(6): 617-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20156584

RESUMO

Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM(3) to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/-)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and beta-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM(3) have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM(3) added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, beta-casein gene expression appeared strongly down-regulated, and beta-casein mRNA levels were partially restored by exogenous GM(3) treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM(3) as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Gangliosídeos/farmacologia , Receptor ErbB-2/metabolismo , Sequência de Bases , Divisão Celular , Linhagem Celular , Primers do DNA , Dimerização , Humanos , Fosforilação
19.
J Neurochem ; 118(2): 266-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554318

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuronal disease which occurs in sporadic or familial forms, clinically indistinguishable. About 15% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene that may induce misfolding in the coded protein, exerting neurotoxicity to motoneurons. However, other cell types might be target of SOD1 toxicity, because muscle-restricted expression of mutant SOD1 correlates with muscle atrophy and motoneurons death. We analysed the molecular behaviour of mutant SOD1 in motoneuronal NSC34 and muscle C2C12 cells. We found that misfolded mutant SOD1 clearance is much more efficient in muscle C2C12 than in motoneuronal NSC34 cells. Mutant SOD1 forms aggregates and impairs the proteasome only in motoneuronal NSC34 cells. Interestingly, NSC34 cells expressing mutant SOD1 are more sensitive to a superoxide-induced oxidative stress. Moreover, in muscle C2C12 cells mutant SOD1 remains soluble even when proteasome is inhibited with MG132. The higher mutant SOD1 clearance in muscle cells correlates with a more efficient proteasome activity, combined with a robust autophagy activation. Therefore, muscle cells seem to better manage misfolded SOD1 species, not because of an intrinsic property of the mutant protein, but in function of the cell environment, indicating also that the SOD1 toxicity at muscle level may not directly depend on its aggregation rate.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Neurônios Motores/enzimologia , Células Musculares/enzimologia , Mutação/fisiologia , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Linhagem Celular Transformada , Humanos , Neurônios Motores/patologia , Células Musculares/patologia , Mioblastos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Superóxido Dismutase/genética , Superóxido Dismutase-1
20.
Front Oncol ; 11: 652085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136389

RESUMO

Breast cancer (BC) is a serious and widespread disease for which different treatments have been developed. In addition to the classic therapies, the treatment with retinoic acid (RA) is still being clinically investigated. RA reduces cancer cells proliferation and migration, but its molecular mechanism of action is not clear. In tumor development, autophagy promotes cancer cell survival and prevents apoptosis. Small heat shock protein B8 (HSPB8) acts together with its co-chaperone BCL-2 associated athanogene 3 (BAG3) stimulating BC proliferation and migration. We analyzed whether direct correlations exist between RA and HSPB8 or BAG3 and how this may play a role in BC. We measured HSPB8 and BAG3 gene expression in MCF-7 BC cells and we analyzed the potential correlation between the antiproliferative and antimigratory effect of RA with the expression level of HSPB8. We found that in MCF-7 cells RA reduces both HSPB8 and BAG3 gene expression and it alters the mitotic spindle organization. Notably, the effects of RA on HSPB8 levels are exerted at both transcriptional and translational levels. RA effects are possibly mediated by miR-574-5p that targets the HSPB8 transcript. Our results suggest that therapeutic doses of RA can efficiently counteract the adverse effects of HSPB8 in BC progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA