Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Opt Express ; 30(5): 7457-7466, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299507

RESUMO

We demonstrate all-optical switching using a multi-mode membranized photonic crystal nanocavity exploiting the free-carrier induced dispersion in InP and the sharp asymmetric lineshape of Fano resonances. A multi-mode cavity is designed to sustain two spatially overlapping modes with a spectral spacing of 18 nm. The measured transmission spectrum of the fabricated device shows multiple asymmetric Fano resonances as predicted by optical simulations. The capabilities of the device are benchmarked by comparing a wavelength conversion from 1538.2 nm to 1565.2 nm with a single-mode wavelength conversion at 1566.2 nm on the same device. The results show an improvement in signal quality with a 5.6 dB power penalty reduction at the receiver as well as in energy efficiency with a reduction of the pump power from 534 fJ/bit to 445 fJ/bit.

2.
Opt Lett ; 45(4): 889-892, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058497

RESUMO

Exploring new frequency bands for optical transmission is essential to overcome the capacity crunch. The 2-µm band is becoming a research spotlight due to available broadband thulium-doped fiber amplifiers as well as low-latency, low-loss hollow-core fibers. Yet most of the 2-µm band devices designed for optical communication are still in their infancy. In this Letter, we propose wavelength conversion based on four-wave mixing in a highly nonlinear AlGaAsOI nanowaveguide to bridge the 2-µm band and the conventional bands. Due to the strong light confinement of the AlGaAsOI nanowaveguide, high-order phase match is enabled by dispersion engineering to achieve a large synergetic conversion bandwidth with high conversion efficiency. Simulation results show a possible conversion bandwidth over an octave. An AlGaAsOI nanowaveguide with 3-mm length and a nominal cross-section dimension of $ 320\;{\rm nm} \times 680\;{\rm nm} $320nm×680nm is used for the wavelength conversion of a 10 Gbit/s non-return-to-zero on-off keying signal and a 10 Gbit/s Nyquist-shaped four-level pulse-amplitude modulation signal. A conversion efficiency of $ - {28}\;{\rm dB}$-28dB is achieved using a 17.5-dBm continuous-wave pump in the C band, with 744 nm conversion from 1999.65 to 1255.35 nm.

3.
Opt Express ; 27(9): 13329-13343, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052859

RESUMO

We have fabricated an air-cladded mode-group selective photonic lantern, which can (de)multiplex the first two mode groups of a standard two-mode step-index fiber. Instead of relying on a low-index capillary tube, our simple solution uses air to form the surrounding "cladding" and thereby enable guiding at the end of the taper. Characterization of a 25-mm long lantern taper results in multiplexing crosstalk values between -20 dB and -12 dB for both modal inputs. The de-multiplexing values were around -12 dB for the fundamental mode, and slightly higher for the first higher-order (LP11) mode. Microscopic imaging of a taper cross section having a width of 30 µm reveals the presence of an uncollapsed airhole in the structure between the three fibers. The impact of such an airhole is numerically investigated using an eigenmode expansion method based on a full-vectorial mode solver, and is found to play an important role in assuring a more adiabatic mode conversion through the taper.

4.
Opt Express ; 26(15): 19596-19605, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114130

RESUMO

We experimentally demonstrate the use of photonic crystal Fano resonances for reshaping optical data signals. We show that the combination of an asymmetric Fano resonance and carrier-induced nonlinear effects in a nanocavity can be used to realize a nonlinear power transfer function, which is a key functionality for optical signal regeneration, particularly for suppression of amplitude fluctuations of data signals. The experimental results are explained using simulations based on coupled-mode theory and also compared to the case of using conventional Lorentzian-shaped resonances. Using indium phosphide photonic crystal membrane structures, we demonstrate reshaping of 2 Gbit/s and 10 Gbit/s return-to-zero on-off keying (RZ-OOK) data signals at telecom wavelengths around 1550 nm. Eye diagrams of the reshaped signals show that amplitude noise fluctuations can be significantly suppressed. The reshaped signals are quantitatively analyzed using bit-error ratio (BER) measurements, which show up to 2 dB receiver sensitivity improvement at a BER of 10-9 compared to a degraded input noisy signal. Due to efficient light-matter interaction in the high-quality factor and small mode-volume photonic crystal nanocavity, low energy consumption, down to 104 fJ/bit and 41 fJ/bit for 2 Gbit/s and 10 Gbit/s, respectively, has been achieved. Device perspectives and limitations are discussed.

5.
Opt Express ; 26(16): 20225-20232, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119335

RESUMO

Simultaneous MIMO-free transmission of 12 orbital angular momentum (OAM) modes over a 1.2 km air-core fiber is demonstrated. WDM compatibility of the system is shown by using 60, 25 GHz spaced WDM channels with 10 GBaud QPSK signals. System performance is evaluated by measuring bit error rates, which are found to be below the soft FEC limit, and limited by inter-modal crosstalk. The crosstalk in the system is analyzed, and it is concluded that it can be significantly reduced with an improved multiplexer and de-multiplexer.

6.
Opt Lett ; 43(4): 955-958, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444036

RESUMO

We experimentally demonstrate the use of a photonic crystal Fano resonance for carving-out short pulses from long-duration input pulses. This is achieved by exploiting an asymmetric Fano resonance combined with carrier-induced nonlinear effects in a photonic crystal membrane structure. The use of a nanocavity concentrates the input field to a very small volume leading to an efficient nonlinear resonance shift that carves a short pulse out of the input pulse. Here, we demonstrate shortening of ∼500 ps and ∼100 ps long pulses to ∼30 ps and ∼20 ps pulses, respectively. Furthermore, we demonstrate error-free low duty cycle return-to-zero signal generation at 2 Gbit/s with energy consumption down to ∼1 pJ/bit and power penalty of ∼2 dB. The device physics and limitations are analyzed using nonlinear coupled-mode theory.

7.
Opt Express ; 24(21): 23777-23783, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828214

RESUMO

We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

8.
Opt Lett ; 41(1): 64-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696159

RESUMO

We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful format conversion of a 640 Gbit/s coherent RZ signal into the equivalent NRZ time-domain data using a simple phase filter implemented by a commercial optical waveshaper.

9.
Opt Express ; 22(5): 5029-36, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663841

RESUMO

Phase regeneration of differential phase-shift keying (DPSK) signals is demonstrated using a silicon waveguide as nonlinear medium for the first time. A p-i-n junction across the waveguide enables decreasing the nonlinear losses introduced by free-carrier absorption (FCA), thus allowing phase-sensitive extinction ratios as high as 20 dB to be reached under continuous-wave (CW) pumping operation. Furthermore the regeneration properties are investigated under dynamic operation for a 10-Gb/s DPSK signal degraded by phase noise, showing receiver sensitivity improvements above 14 dB. Different phase noise frequencies and amplitudes are examined, resulting in an improvement of the performance of the regenerated signal in all the considered cases.

10.
Opt Express ; 22(10): 11456-64, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921267

RESUMO

Simultaneous regeneration of four high-speed (160 Gbit/s) wavelength-division multiplexed (WDM) and polarization-division multiplexed (PDM) signals in a single highly nonlinear fiber (HNLF) is demonstrated. The regeneration operation is based on four-wave mixing in HNLF, where the degraded data signals are applied as the pump. As a result, the noise on both '0' and '1' levels can be suppressed simultaneously in our scheme. The stimulated Brillouin scattering (SBS) from the continuous wave (CW) is suppressed by cross-phase modulation (XPM) from the data pump, relieving the requirement of external phase modulation of the CW light. Mitigation of the inter-channel nonlinearities is achieved mainly through an inter-channel 0.5 bit slot time delay. Bidirectional propagation is also applied to relieve the inter-channel four-wave mixing. The multi-channel regeneration performance is validated by bit-error rate (BER) measurements. The receiver powers at the BER of 10(-9) are improved by 1.9 dB, 1.8 dB, 1.6 dB and 1.5 dB for the four data channels, respectively.

11.
Opt Lett ; 39(9): 2815-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784111

RESUMO

We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper.

12.
Opt Lett ; 39(8): 2222-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978956

RESUMO

In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal passes through a length of dispersive fiber, the dispersion amount of which is set to ensure that the group delay between the adjacent wavelength channels is equal to the bit duration of the applied random sequence. As a result, the detected signal is a delay-and-sum version of the randomly mixed signal, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique.

13.
Nat Commun ; 15(1): 1651, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395964

RESUMO

Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology.

14.
Opt Express ; 21(22): 26044-51, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216829

RESUMO

We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain bandwidth both in saturated and unsaturated gain regimes.

15.
Opt Express ; 21(3): 2862-8, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481744

RESUMO

We experimentally demonstrate simultaneous all-optical regeneration of two 160-Gbit/s wavelength-division multiplexed (WDM) channels in a single highly nonlinear fiber (HNLF). The multi-channel regeneration performance is confirmed by bit-error rate (BER) measurements. The receiver powers at a BER of 10(-9) are improved by about 4.9 dB and 2.1 dB for the two channels, respectively. The BER performance is not degraded by the presence of a second channel. Mitigation of the inter-channel nonlinearities is achieved through bidirectional propagation.


Assuntos
Fibras Ópticas , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear
16.
Opt Express ; 21(22): 25944-53, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216820

RESUMO

We report the first experimental demonstration of parametric amplification and all-optical phase-preserving amplitude regeneration for a 640 Gbit/s return-to-zero (RZ) differential phase-shift keying (DPSK) optical time division multiplexed (OTDM) signal. In the designed gain-flattened single-pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded optical signal-to-noise ratio. An improvement of 2.2 dB in receiver sensitivity at a bit-error-ratio of 10(-9) has been successfully achieved after regeneration, together with 13.3 dB net gain.

17.
Opt Express ; 20(14): 15530-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772248

RESUMO

We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion influences the energy transfer to the signal, depending on its detuning with respect to the pump, and breaks the symmetry of the gain expected from phase-matching considerations in unsaturated amplifiers. The asymmetry feature of the saturated spectrum is shown to particularly depend on the dispersion characteristics of the amplifier and shows local maxima for specific dispersion values.

18.
Nat Commun ; 13(1): 4139, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842421

RESUMO

Today's optical communication systems are fast approaching their capacity limits in the conventional telecom bands. Opening up new wavelength bands is becoming an appealing solution to the capacity crunch. However, this ordinarily requires the development of optical transceivers for any new wavelength band, which is time-consuming and expensive. Here, we present an on-chip continuous spectral translation method that leverages existing commercial transceivers to unlock the vast and currently unused potential new wavelength bands. The spectral translators are continuous-wave laser pumped aluminum gallium arsenide on insulator (AlGaAsOI) nanowaveguides that provide a continuous conversion bandwidth over an octave. We demonstrate coherent transmission in the 2-µm band using well-developed conventional C-band transmitters and coherent receivers, as an example of the potential of the spectral translators that could also unlock communications at other wavelength bands. We demonstrate 318.25-Gbit s-1 Nyquist wavelength-division multiplexed coherent transmission over a 1.15-km hollow-core fibre using this approach. Our demonstration paves the way for transmitting, detecting, and processing signals at wavelength bands beyond the capability of today's devices.

19.
Opt Express ; 19(26): B343-9, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274041

RESUMO

We demonstrate a high-quality cavity-free 10 GHz 680 fs pulse source starting from a continuous wave (CW) laser. The pulse source is employed in a 640 Gbit/s on-off keying (OOK) OTDM data generation and demultiplexing experiment, where the error-free bit error rate (BER) performance confirms the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal.

20.
Opt Express ; 19(24): 24448-53, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109471

RESUMO

We present WDM multicasting based on dual-pump four-wave mixing in a 3-mm long dispersion engineered silicon waveguide. One-to-six phase-preserving WDM multicasting of 10-Gb/s differential phase-shift-keying (DPSK) data is experimentally demonstrated with bit-error rate measurements. All the six multicast signals show error-free performance with power penalty less than 3.8 dB.


Assuntos
Lasers de Estado Sólido , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA