Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chemistry ; 29(46): e202301319, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272583

RESUMO

Columnar liquid crystals with very small molecular masses that form anisotropic glasses well above room temperature are obtained by mixed dissymmetric substitution of sym-triazine with ester-bearing phenyl and phenanthryl or tetrahelicenyl moieties. The combination of low molecular symmetry with configurational flexibility and short polar ester moieties stabilizes the mesophase over large temperature ranges and induces pronounced calorimetric glass transitions within the anisotropic fluid despite the smallness of the molecules. In contrast to more symmetrical homologs, no ester tails longer than ethyl are necessary to induce the liquid crystalline state, allowing for the near-absence of any insulating and weight-increasing alkyl periphery. Films drop-cast from solution show in all cases emission spectra that do not show significant change of fluorescence emission upon annealing, indicating that the columnar hexagonal mesoscopic order is obtained directly upon deposition from solution and is resistant to crystallization upon annealing.

2.
Chemistry ; 29(24): e202203604, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36692252

RESUMO

Triply phenanthryl- and tetrahelicenyl-substituted triazine-hexaalkyl esters with short alkyl chains show glass transitions conveniently above room temperature within the hexagonal columnar liquid crystalline state, resulting in a solid columnar order at room temperature. As the hexagonal columnar mesophase is easily aligned with the director perpendicular to a solid substrate, such glassy columnar liquid matrices are aimed at for the orientation of guest emitters, to obtain anisotropic emission. A condition for face-on alignment on substrates are attainable melting and clearing temperatures, which is achieved with the moderately nonplanar tetrahelicenyl derivatives in spite of their short alkyl periphery. An unusual phase transition between two columnar mesophases of same hexagonal symmetry, but very different long-distance regularity of the column lattice, is found in one phenanthryl homolog.

3.
Chemistry ; 29(23): e202203800, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36648938

RESUMO

Most organic room-temperature phosphorescence (RTP) emitters do not show their RTP in solution. Here, we incorporated sulfur-containing thiophene bridges between the donor and acceptor moieties in D3 A-type tristriazolotriazines (TTTs). The thiophene inclusion increased the spin-orbit coupling associated with the radiative T1 →S0 pathway, allowing RTP to be observed in solution for all compounds, likely assisted by protection of the emissive TTT-thiophene core from the environment by the bulky peripheral donors.

4.
Beilstein J Org Chem ; 19: 1755-1765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025088

RESUMO

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

5.
Chaos ; 32(4): 043112, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35489849

RESUMO

To predict rare extreme events using deep neural networks, one encounters the so-called small data problem because even long-term observations often contain few extreme events. Here, we investigate a model-assisted framework where the training data are obtained from numerical simulations, as opposed to observations, with adequate samples from extreme events. However, to ensure the trained networks are applicable in practice, the training is not performed on the full simulation data; instead, we only use a small subset of observable quantities, which can be measured in practice. We investigate the feasibility of this model-assisted framework on three different dynamical systems (Rössler attractor, FitzHugh-Nagumo model, and a turbulent fluid flow) and three different deep neural network architectures (feedforward, long short-term memory, and reservoir computing). In each case, we study the prediction accuracy, robustness to noise, reproducibility under repeated training, and sensitivity to the type of input data. In particular, we find long short-term memory networks to be most robust to noise and to yield relatively accurate predictions, while requiring minimal fine-tuning of the hyperparameters.


Assuntos
Aprendizado Profundo , Simulação por Computador , Memória de Longo Prazo , Redes Neurais de Computação , Reprodutibilidade dos Testes
6.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361597

RESUMO

Herein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the electronic properties of the substituents determine the charge delocalization and the partial charge on selenium, which correlate with the catalytic performances. The amino group concurs in the stabilization of the selenolate intermediate through a hydrogen bond with the selenium.

7.
Chemistry ; 24(9): 2214-2223, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29220553

RESUMO

Dibenzo[a,j]coronene-tetracarboxylic alkyl esters and imides with either a centrosymmetric bis-peri substitution pattern or a polar bis-ortho substitution pattern form hexagonal columnar mesophases, which in the case of the imides persist at room temperature. The bis-peri isomers are obtained via a two-fold oxidative photocyclization; the bis-ortho isomers are accessed via a glyoxylic Perkin reaction of triphenylene and naphthalene building blocks. Steric congestion between the substituents and the adjacent benzo protrusion in the bis-ortho esters and imides leads to bending of the aromatic plane, which thus avoids twisting. These isomers surprisingly show a more pronounced liquid crystalline behaviour than their non-bent bis-peri homologs, accommodating non-planarity with columnar order by slipped stacking. Whereas both types of ester and the bis-peri imide show an optical behaviour typical for perylene chromophores, the strongly bent bis-ortho imide distinguishes itself notably from them by its absorption spectrum. The electron acceptor strength of the isomeric diimides is found to differ, the hexagonal (peri) diimide having a 0.20 eV lower LUMO energy than the pentagonal (ortho) isomer.

8.
Angew Chem Int Ed Engl ; 56(12): 3379-3382, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28181364

RESUMO

Perkin condensation of chrysenyl-6-acetic acid with chrysenylene-6,12-diglyoxylic acid followed by in situ esterification gives a bismaleate, whose conjugated stilbene moieties are efficiently shielded against intermolecular condensations and undergo iodine-catalyzed oxidative photocyclization in toluene without the need for high dilution. The concentration is limited by the low solubility of the flexible bismaleate at room temperature. The so-obtained double [7]helicene crystallizes in a nonchiral meso form. It is notably more soluble than its flexible precursor because it cannot fold to optimize π-π stacking.

9.
Chemistry ; 22(24): 8181-97, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27143620

RESUMO

Two isomeric achiral bent-core liquid crystals involving a 4-cyanoresorcinol core and containing a carbosilane unit as nanosegregating segment were synthesized and were shown to form ferroelectric liquid-crystalline phases. Inversion of the direction of one of the COO groups in these molecules leads to a distinct distribution of the electrostatic potential along the surface of the molecule and to a strong change of the molecular dipole moments. Thus, a distinct degree of segregation of the carbosilane units and consequent modification of the phase structure and coherence length of polar order result. For the compound with larger dipole moment (CN1) segregation of the carbosilane units is suppressed, and this compound forms paraelectric SmA and SmC phases; polar order is only achieved after transition to a new LC phase, namely, the ferroelectric leaning phase (SmCLs PS ) with the unique feature that tilt direction and polar direction coincide. The isomeric compound CN2 with a smaller dipole moment forms separate layers of the carbosilane groups and shows a randomized polar SmA phase (SmAPAR ) and ferroelectric polydomain SmCs PS phases with orthogonal combination of tilt and polar direction and much higher polarizations. Thus, surprisingly, the compound with the smaller molecular dipole moment shows increased polar order in the LC phases. Besides ferroelectricity, mirror-symmetry breaking with formation of a conglomerate of macroscopic chiral domains was observed in one of the SmC phases of CN1. These investigations contribute to the general understanding of the development of polar order and chirality in soft matter.

10.
Chemistry ; 22(24): 8043-7, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27141916

RESUMO

The twofold glyoxylic Perkin reaction of perylene-3,9-diglyoxylic acid with thiophene-diacetic acid followed by oxidative photocylization and reaction with α-branched primary alkylamines yields columnar liquid-crystalline diimides with two sulfur atoms in the condensed arene system. A broad temperature range of the hexagonal columnar mesophase is induced by racemic doubly branched alkyl chains. The HOMO and LUMO energy levels of these thiophene-derived diimides qualify them as electron donors with respect to perylene diimides.

11.
Chemistry ; 22(22): 7389-93, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27145525

RESUMO

Whereas perylene tetracarboxdiimides derived from amino-n-alkanes if at all only show monotropic (thermodynamically unstable) mesogenic self-assembly, the hexagonal columnar liquid crystalline state can be stabilized over a broad temperature range with doubly branched, doubly racemic alkyl residues. An improved tendency to homeotropic surface orientation is observed, and the orientation of the liquid crystalline domains is maintained upon cycling through the crystalline state at room temperature.

12.
Chemistry ; 21(11): 4391-7, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25656752

RESUMO

Although the double Friedel-Crafts acylation of arenes with ethyl chloroglyoxylate is hindered by the strongly deactivating effect of the first-entering glyoxylic substituent, the double reaction is successful with the reactive arene perylene under long reaction times and with concomitant ester hydrolysis. The reaction is regiospecific, giving the 3,9-regioisomer exclusively. This perylenylenediglyoxylic acid is condensed first with o-bromophenylacetic acid and then with α-branched alkylamines to yield the title compounds. Whilst the corresponding tetraalkyl esters only show monotropic mesophases, these diimides show enantiotropic columnar mesophases that can be maintained at room temperature if racemically branched alkyl chains of moderate size are used. A palladium-induced C-C bond migration during the build-up of the arene system leads to an isomeric side product of reduced symmetry that can be isolated by aggregation-controlled chromatographic separation. The HOMO and LUMO energies of the title compounds are considerably higher than those of established perylenetetracarboxdiimides.

13.
Chemistry ; 21(20): 7603-10, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25820523

RESUMO

Prolonged glyoxylation of pyrenyl-1-glyoxylic acid ethyl ester leads to a mixture of isomers with polar pyrenylene-1,8-diglyoxylic acid as the main product, whereas the centrosymmetric 1,6-isomer is obtained in good yield from the corresponding dibromopyrene. Perkin condensations followed by Pd-catalyzed cyclizations lead to isomeric dinaphthopyrene-tetracarboxdiimides that self-assemble into columnar liquid crystals of hexagonal and rectangular symmetry, of which the rectangular mesophases have unusually elongated unit cells. The cisoid diimides with both alkylimide substituents on the same side of the oblong arene system show a much greater tendency to self-assemble into fluid stacks of disks than their centrosymmetric isomers. With racemically branched alkyl substituents, uniform vertical surface alignment of the columns in the high-temperature hexagonal mesophase is resilient to cycling through the lower-temperature rectangular and crystalline phases.

14.
Bioconjug Chem ; 25(9): 1638-43, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25111622

RESUMO

A nanostructured immunosensor based on the liquid crystal (E)-1-decyl-4-[(4-decyloxyphenyl)diazenyl]pyridinium bromide (Br-Py) and gold nanoparticles supported by the water-soluble hybrid material 3-n-propyl-4-picolinium silsesquioxane chloride (AuNP-Si4Pic(+)Cl(-)) was built for the detection of troponin T (cTnT), a cardiac marker for acute myocardial infarction (AMI). The functionalized nanostructured surface was used to bind anti-cTnT monoclonal antibodies through electrostatic interaction. The immunosensor (ab-cTnT/AuNP-Si4Pic(+)Cl(-)/Br-Py/GCE) surface was characterized by microscopy techniques. The electrochemical behavior of the immunosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. A calibration curve was obtained by square-wave voltammetry. The immnunosensor provided a limit of detection of 0.076 ng mL(-1) and a linear range between 0.1 and 0.9 ng mL(-1) (appropriate for AMI diagnosis).


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Imunoensaio/métodos , Cristais Líquidos/química , Nanopartículas Metálicas/química , Compostos de Organossilício/química , Troponina T/análise , Calibragem , Eletroquímica , Humanos , Compostos de Piridínio/química , Reprodutibilidade dos Testes
15.
Analyst ; 139(20): 5200-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222288

RESUMO

A label-free electrochemical immunosensor based on an ionic organic molecule ((E)-4-[(4-decyloxyphenyl)diazenyl]-1-methylpyridinium iodide) and chitosan-stabilized gold nanoparticles (CTS-AuNPs) was developed for the detection of cardiac troponin T (cTnT). The new ionic organic molecule was strategically employed as a redox probe, and CTS-AuNPs were applied as a "green" platform for the immobilization of the monoclonal anti-cTnT antibody, for the construction of the immunosensor. The characterization of the proposed immunosensor was carried out by employing cyclic and square-wave voltammetry and electron microscopy. The film of ionic organic molecules acts as a redox probe and from its electrochemical response the presence of cTnT antigens, which interact specifically with the anti-cTnT antibody immobilized on the surface of the immunosensor, can be detected. This interaction results in a decrease in the analytical signal, which is proportional to the amount of cTnT antigens present in the sample analyzed. Under optimized conditions, using square-wave voltammetry (a frequency of 100 Hz, an amplitude of 100 mV and an increment of 8 mV) and an incubation time of 10 min, the proposed immunosensor showed linearity in the range of 0.20 to 1.00 ng mL(-1) cTnT, with a calculated limit of detection of 0.10 ng mL(-1). The proposed immunosensor shows some advantages when compared to other sensors reported in the literature, especially with regard to the detection limit and the time of incubation. A study of the interday precision (n = 8) showed a coefficient of variation of 3.33%. The potential interference of some compounds (glucose, ascorbic acid, albumin, uric acid, creatine, and creatinine) on the response of the immunosensor was evaluated and the inhibition of the immunosensor response was found to be less than 8.0%. The immunosensor was successfully used for the determination of cTnT in samples of simulated blood serum with a relative error of <13.0%. Furthermore, the proposed methodology provides a working range that allows the detection of cTnT antigens at levels below the cutoff value used for the diagnosis of acute myocardial infarction and was also found to be faster than the conventional methods.


Assuntos
Técnicas Biossensoriais/métodos , Quitosana/química , Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Troponina T/análise , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Concentração de Íons de Hidrogênio , Miocárdio/metabolismo , Compostos de Piridínio/química
16.
Phys Chem Chem Phys ; 16(7): 2892-6, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24424377

RESUMO

The incorporation of dyes in liquid crystal matrices has been exploited to produce enhanced displays, but it can also be used to probe ordering in liquid crystals and to assess intermolecular interactions and dye aggregation. In this study, we investigated polarized absorption and emission of the luminescent dyes 4,7-bis(2-(4-(decyloxy)phenyl)ethynyl)-[2,1,3]-benzothiadiazole (1A) and 4,7-bis{2-[4-(4-decylpiperazin-1-yl)phenyl]ethynyl}-[2,1,3]-benzothiadiazole (5A) in the E7® liquid crystal. The electronic structures of both 1A and 5A dyes were affected by the matrix and by the analysis of the line shape of emission we could determine that the dyes form J aggregates. This achievement is significant because obtaining this type of information for small molecules requires ordered matrices, which is difficult to obtain for these dyes. Using emission ellipsometry we were able to determine the ordering of the E7 molecules, but this was possible only with the larger 5A dye. The smaller 1A was not entirely ordered in the E7 matrix and this calls for caution in other types of work where dopants are used as probes to infer the properties of the matrix. The emission ellipsometry data for the dyes allowed us to detect the enhanced birefringence in the matrix, thus confirming the theoretical prediction.

17.
Chempluschem ; 88(11): e202300539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801036

RESUMO

Three tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole derivatives containing different number of long alkoxy chains (2, 4 and 6) were synthesized, characterized and applied in Organic Light Emitting Diodes (OLEDs). The compounds showed good emission properties with Photoluminescence Quantum Yields (PLQYs) higher than 80 % in solution and 50 % in solid state (thin film). The solvatochromism results revealed a pronounced vibronic emission in methylcyclohexane and toluene, characterized by two distinct sharp emission peaks and a small redshift in the following order: methylcyclohexane>toluene>dichloromethane>tetrahydrofuran>acetonitrile. Also, the compounds formed aggregates with redshifted emission, which can be attributed to excimer formation. This phenomenon was observed in solutions containing 90 % water and with the concentration variation in methylcyclohexane (MCH). Compounds with a greater number of peripheral chains showed the capacity to keep hexagonal columnar organization in films after fast cooling from liquid state. OLEDs fabricated with these compounds showed turn-on voltages lower than 4.0 V, with luminance higher than 1400 cd m-2 , electroluminescence spectra with Full Width at Half Maximum lower than 70 nm and maximum External Quantum Efficiency between 7.2 % and 4.3 %. Overall, this shows that the 1,4-dihydropyrrolo[3,2-b]pyrrole moiety is promising for applications where luminescence is paramount, as in organic light-emitting devices.

18.
Langmuir ; 28(31): 11590-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22747343

RESUMO

Five discotic molecules comprising a tris[1,2,4]triazolo[1,3,5] triazine core were designed and synthesized to obtain luminescent and charge-transporting columnar liquid crystalline materials. With the exception of one compound containing terminal hydroxyl groups all compounds presented a wide thermal range and stable columnar liquid crystalline phase, characterized by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction (XRD) techniques. The phase formation appeared to be associated to some extent with interdigitation of the alkoxy and benzylalkoxy portion, as suggested by the XRD results. All compounds have a strong blue luminescence in solution and solid phase. At the temperature at which the compounds enter in the mesophase the luminescence decreases significantly. This result suggests that entrance into the Col(h) phase is accompanied by a better π-stacking of the peripheral phenyl rings compared to the solid phase, consistent with the intramolecular distances (3.5 Å) observed in the XRD analysis. These compounds based on tristriazolotriazine are quite robust with good optical and thermal properties for application as solid state emitters, and we anticipate that they may provide an interesting alternative to other discotic molecules based on N-heterocycles, which generally present a high-temperature Col(h) phase.

19.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551080

RESUMO

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Nanopartículas Metálicas , Ouro/química , Troponina I , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Limite de Detecção
20.
Dalton Trans ; 51(3): 1008-1018, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34935838

RESUMO

Speeding up the phosphorescence channel in luminescent copper(I) complexes has been extremely challenging due to the copper atoms relatively low spin-orbit coupling constant compared to heavier metals such as iridium. Here, we report the synthesis and characterization of three mononuclear copper(I) complexes with diimines, triphenylphosphine, and iodide ligands to evaluate the effect of the copper-iodide (Cu-I) moiety into the phosphorescence decay pathway. Temperature-dependent photophysical studies revealed combined thermally activated delayed fluorescence and phosphorescence emission, with a phosphorescence decay rate of the order of 104 s-1. Density functional theory calculations indicate very high spin-orbit coupling matrix elements between the low-lying states of these complexes. Compared to the classical [Cu(phen)(POP)]+, our results demonstrate that Cu-I is a versatile moiety to speed up the phosphorescence decay pathway in about one order of magnitude, and it can be prepared by a simplified synthetic route with few synthetic steps. Furthermore, the SOC matrix elements and the phosphorescence decay rates of these complexes are comparable to those of extensively applied coordination complexes based on heavier metals, making them a promising alternative as active layers of organic light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA