Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 20(7): e1011348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038048

RESUMO

Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Proteínas Relacionadas a Receptor de LDL , Proteína Reelina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Feminino , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Apolipoproteínas E/genética , Masculino , Hipocampo/metabolismo , Hipocampo/patologia , Idoso de 80 Anos ou mais , Splicing de RNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
2.
J Neurosci ; 42(20): 4054-4068, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35414534

RESUMO

Human apolipoprotein E receptor 2 (APOER2) is a type I transmembrane protein with a large extracellular domain (ECD) and a short cytoplasmic tail. APOER2-ECD contains several ligand-binding domains (LBDs) that are organized into exons with aligning phase junctions, which allows for in-frame exon cassette splicing events. We have identified 25 human APOER2 isoforms from cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events within the N-terminal LBD regions compared with six identified in the heart. APOER2 undergoes proteolytic cleavage in response to ligand binding that releases a C-terminal fragment (CTF) and transcriptionally active intracellular domain (ICD). We tested whether the diversity of human brain-specific APOER2 variants affects APOER2 cleavage. We found isoforms with differing numbers of ligand-binding repeats generated different amounts of CTFs compared with full-length APOER2 (APOER2-FL). Specifically, APOER2 isoforms lacking exons 5-8 (Δex5-8) and lacking exons 4-6 (Δex4-6) generated the highest and lowest amounts of CTF generation, respectively, in response to APOE peptide compared with APOER2-FL. The differential CTF generation of Δex5-8 and Δex4-6 coincides with the proteolytic release of the ICD, which mediates transcriptional activation facilitated by the Mint1 adaptor protein. Functionally, we demonstrated loss of mouse Apoer2 decreased miniature event frequency in excitatory synapses, which may be because of a decrease in the total number of synapses and/or VAMP2 positive neurons. Lentiviral infection with human APOER2-FL or Δex4-6 isoform in Apoer2 knockout neurons restored the miniature event frequency but not Δex5-8 isoform. These results suggest that human APOER2 isoforms have differential cleavage events and synaptic properties.SIGNIFICANCE STATEMENT Humans and mice share virtually the same number of protein-coding genes. However, humans have greater complexity of any higher eukaryotic organisms by encoding multiple protein forms through alternative splicing modifications. Alternative splicing allows pre-mRNAs transcribed from genes to be spliced in different arrangements, producing structurally and functionally distinct protein variants that increase proteomic diversity and are particularly prevalent in the human brain. Here, we identified 25 distinct human APOER2 splice variants from the cerebral cortex using gene-specific APOER2 primers, where the majority are exon-skipping events that exclude N-terminal ligand-binding regions of APOER2. We show that some of the APOER2 variants have differential proteolytic properties in response to APOE ligand and exhibit distinct synaptic properties.


Assuntos
Proteínas do Tecido Nervoso , Proteômica , Processamento Alternativo , Animais , Apolipoproteínas E/genética , Humanos , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
3.
Genomics ; 114(2): 110318, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192893

RESUMO

Apolipoprotein E receptor 2 (Apoer2) is a synaptic receptor in the brain that binds disease-relevant ligand Apolipoprotein E (Apoe) and is highly alternatively spliced. We examined alternative splicing (AS) of conserved Apoer2 exons across vertebrate species and identified gain of exons in mammals encoding functional domains such as the cytoplasmic and furin inserts, and loss of an exon in primates encoding the eighth LDLa repeat, likely altering receptor surface levels and ligand-binding specificity. We utilized single molecule, long-read RNA sequencing to profile full-length Apoer2 isoforms and identified 68 and 48 unique full-length Apoer2 transcripts in the mouse and human cerebral cortex, respectively. Furthermore, we identified two exons encoding protein functional domains, the third EGF-precursor like repeat and glycosylation domain, that are tandemly skipped specifically in mouse. Our study provides new insight into Apoer2 isoform complexity in the vertebrate brain and highlights species-specific differences in splicing decisions that support functional diversity.


Assuntos
Processamento Alternativo , Proteínas Relacionadas a Receptor de LDL , Animais , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Mamíferos , Camundongos , Estrutura Terciária de Proteína , Splicing de RNA
4.
Front Mol Neurosci ; 13: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848602

RESUMO

Alternative splicing occurs in over 95% of protein-coding genes and contributes to the diversity of the human proteome. Apolipoprotein E receptor 2 (apoER2) is a critical modulator of neuronal development and synaptic plasticity in the brain and is enriched in cassette exon splicing events, in which functional exons are excluded from the final transcript. These alternative splicing events affect apoER2 function, as individual apoER2 exons tend to encode distinct protein functional domains. Although several apoER2 splice variants have been characterized, much work remains to understand how apoER2 splicing events modulate distinct apoER2 activities, including ligand binding specificity, synapse formation and plasticity. Additionally, little is known about how apoER2 splicing events are regulated. Often, alternative splicing events are regulated through the combinatorial action of RNA-binding proteins and other epigenetic mechanisms, however, the regulatory pathways corresponding to each specific exon are unknown in most cases. In this mini-review, we describe the structure of apoER2, highlight the unique functions of known isoforms, discuss what is currently known about the regulation of apoER2 splicing by RNA-binding proteins and pose new questions that will further our understanding of apoER2 splicing complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA