Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(42): 15098-15103, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31453650

RESUMO

It is generally believed that CO2 electroreduction to multi-carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu-N-C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen-doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3 , potential: -1.2 V vs. RHE and gas-phase recycling set up), as well as CO electroreduction to C2 -products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.

2.
ChemSusChem ; 13(1): 173-179, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31622012

RESUMO

Electroreduction of CO2 to CO is one of the simplest ways to valorise CO2 as a source of carbon. Herein, a cheap, robust, Cu-based hybrid catalyst consisting of a polymer of Cu phthalocyanine coated on carbon nanotubes, which proved to be selective for CO production (80 % faradaic yield) at relatively low overpotentials, was developed. Polymerisation of Cu phthalocyanine was shown to have a drastic effect on the selectivity of the reaction because molecular Cu phthalocyanine was instead selective for proton reduction under the same conditions. Although the material only showed isolated Cu sites in phthalocyanine-like CuN4 coordination, in situ and operando X-ray absorption spectroscopy showed that, under operating conditions, the Cu atoms were fully converted to Cu nanoparticles, which were likely the catalytically active species. Interestingly, this restructuring of the metal sites was reversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA