Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18099, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164021

RESUMO

Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Fibrose , MicroRNAs/metabolismo , Receptores de Trombina
2.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987851

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Assuntos
Senescência Celular , Células Epiteliais , Exossomos , Túbulos Renais , Macrófagos , MicroRNAs , Telômero , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Exossomos/metabolismo , Exossomos/genética , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos , Telômero/genética , Telômero/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Masculino , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibrose/genética , Angiotensina II
3.
Ren Fail ; 46(1): 2318413, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38369750

RESUMO

The prevalence of diabetic kidney disease (DKD) is increasing annually. Damage to and loss of podocytes occur early in DKD. tRNA-derived fragments (tRFs), originating from tRNA precursors or mature tRNAs, are associated with various illnesses. In this study, tRFs were identified, and their roles in podocyte injury induced by high-glucose (HG) treatment were explored. High-throughput sequencing of podocytes treated with HG was performed to identify differentially expressed tRFs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression levels of nephrin, podocin, and desmin were measured in podocytes after overexpression of tRF-1:24-Glu-CTC-1-M2 (tRF-1:24) and concomitant HG treatment. A total of 647 tRFs were identified, and 89 differentially expressed tRFs (|log2FC| ≥ 0.585; p ≤ .05) were identified in the HG group, of which 53 tRFs were downregulated and 36 tRFs were upregulated. The 10 tRFs with the highest differential expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and these results were consistent with the sequencing results. GO analysis revealed that the biological process, cellular component, and molecular function terms in which the tRFs were the most enriched were cellular processes, cellular anatomical entities, and binding. KEGG pathway analysis revealed that tRFs may be involved in signaling pathways related to growth hormones, phospholipase D, the regulation of stem cell pluripotency, and T-/B-cell receptors. Overexpression of tRF-1:24, one of the most differentially expressed tRFs, attenuated podocyte injury induced by HG. Thus, tRFs might be potential biomarkers for podocyte injury in DKD.


Assuntos
Glucose , Podócitos , Glucose/efeitos adversos , Glucose/farmacologia , Podócitos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais , Nefropatias Diabéticas/epidemiologia
4.
Mol Med ; 29(1): 147, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891461

RESUMO

BACKGROUND: Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS: In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS: In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS: Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Fibrose
5.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596398

RESUMO

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Diabetes Mellitus/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Exossomos/metabolismo , Fibrose , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Células Satélites de Músculo Esquelético/metabolismo , Complicações do Diabetes/terapia
6.
Mol Biol Rep ; 49(3): 2119-2128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149934

RESUMO

BACKGROUND: Angiotensin II (Ang II) contributes to the progression of glomerulosclerosis, mainly by inducing podocyte injury. Convincing evidence indicates that the mTOR inhibitor rapamycin could play a fundamental role in protection against podocyte injury. Nestin, a major cytoskeletal protein, is stably expressed in podocytes and correlates with podocyte damage. The purpose of this study was to investigate the effect of rapamycin on podocyte injury induced by Ang II and to clarify the role and mechanism of nestin in the protective effect of rapamycin of podocyte injury. METHODS AND RESULTS: We established an Ang II perfusion animal model, and the effects of rapamycin treatment on podocytes were investigated in vivo. In vitro, podocytes were stimulated with Ang II and rapamycin to observe podocyte injury, and nestin-siRNA was transfected to investigate the underlying mechanisms. We observed that Ang II induced podocyte injury both in vivo and in vitro, whereas rapamycin treatment relieved Ang II-induced podocyte injury. We further found that nestin co-localized with p-mTOR in glomeruli, and the protective effect of rapamycin was reduced by nestin-siRNA in podocytes. Moreover, co-IP indicated the interaction between nestin and p-mTOR, and nestin could affect podocyte injury via the mTOR/P70S6K signaling pathway. CONCLUSION: We demonstrated that rapamycin attenuated podocyte apoptosis via upregulation of nestin expression through the mTOR/P70S6K signaling pathway in an Ang II-induced podocyte injury.


Assuntos
Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Apoptose , Nestina/genética , Nestina/metabolismo , Podócitos/metabolismo , Sirolimo/farmacologia , Regulação para Cima
7.
Biochem Biophys Res Commun ; 521(1): 1-8, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629473

RESUMO

Loss of glomerular podocytes is the crucial event in the progression of chronic kidney disease (CKD). tRNA-derived fragments (tRFs), a newfangled branch of small non-coding RNA (sncRNA), recently reported to play a vital part in several diseases. In present study, we aimed to detect and reveal the role of tRFs in podocyte differentiation. The expression levels of tRFs between undifferentiated and differentiated podocytes were sequenced by illumina nextseq 500, and further verified by quantitative RT-PCR. 69 upregulated and 70 downregulated tRFs in total were singled out (Fold change > 2, P < 0.05). Gene ontology (GO) analysis indicated they are involved in the biological processes of transcription, DNA-templated, positive regulation of transcription from RNA polymerase II promoter, angiogenesis, cell adhesion. Besides, KEGG analysis suggested that these differentially tRFs are associated with PI3K-Akt signaling pathway, Rap1 signaling pathway, Ras signaling pathway, MAPK signaling pathway, and Wnt signaling pathway. Therefore, the differentially tRFs might regulate the differentiation of podocyte and the process of CKD. The functions and mechanisms of tRFs in podocytes are needed to be further explored.


Assuntos
Podócitos/metabolismo , RNA de Transferência/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Camundongos , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação
8.
Eur J Clin Microbiol Infect Dis ; 39(12): 2211-2223, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32761481

RESUMO

Since the outbreak of novel coronavirus infection pneumonia in Wuhan City, China, in late 2019, such cases have been gradually reported in other parts of China and abroad. Children have become susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because of their immature immune function. As the outbreak has progressed, more cases of novel coronavirus infection/pneumonia in children have been reported. Compared with adults, the impact of SARS-CoV-2 infection in children is less severe, with a lower incidence and susceptibility in children, which results in fewer children being tested, thereby underestimating the actual number of infections. Therefore, strengthening the diagnosis of the disease is particularly important for children, and early and clear diagnosis can determine treatment strategies and reduce the harm caused by the disease to children. According to the Novel Coronavirus Infection Pneumonia Diagnosis and Treatment Standards (trial version 7) issued by National Health Committee and the latest diagnosis and treatment strategies for novel coronavirus infection pneumonia in children, this review summarizes current strategies on diagnosis and treatment of SARS-CoV-2 infection in children.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/terapia , Pneumonia Viral/diagnóstico , Pneumonia Viral/terapia , RNA Viral/sangue , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Doenças Assintomáticas , Betacoronavirus/patogenicidade , Biomarcadores/sangue , COVID-19 , Teste para COVID-19 , Criança , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Tosse/diagnóstico , Combinação de Medicamentos , Diagnóstico Precoce , Febre/diagnóstico , Humanos , Hidroxicloroquina/uso terapêutico , Interferon-alfa/uso terapêutico , Lopinavir/uso terapêutico , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Guias de Prática Clínica como Assunto , RNA Viral/genética , Ribavirina/uso terapêutico , Ritonavir/uso terapêutico , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
9.
Biochem Biophys Res Commun ; 514(4): 1101-1107, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097225

RESUMO

Mesangial cell (MCs) proliferation is an essential component of glomerulonephritis. To find some bio-markers of mesangial cell proliferation, we investigate the relationship between transfer RNA fragments (tRFs) and proliferating mesangial cells. The model of proliferating mesangial cells was built by using transforming growth factor-1(TGF-ß1) treated mesangial cells. Then we analyzed the expression of tRFs in normal mesangial cells and mesangial cells treated by TGF-ß1 through high-throughput sequencing technique. qRT-PCR was conducted to validate the differently expressed tRFs in normal mesangial cells and mesangial cells treated by TGF-ß1. tDR-000064 and tDR-000103 were notably down-regulated in mesangial cells treated by TGF-ß1 compared with normal mesangial cells. Then we confirmed that tDR-000064 and tDR-000103 were correlated with proliferation of mesangial cells through receiver operating characteristic curve analysis. Furthermore, Gene ontology (GO) and pathway analysis demonstrated that the two dys-regulated tRFs were mostly involved in mesangial cells and TGF-ß1 receptor-mediated signaling pathway. Our research provides a comprehensive analysis of tRFs in proliferating mesangial cells. (Figure 1A).


Assuntos
Células Mesangiais/citologia , RNA de Transferência/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Perfilação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/metabolismo , Células Mesangiais/metabolismo , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo , Ratos
10.
Cell Physiol Biochem ; 36(3): 1210-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26138882

RESUMO

AIMS: This study aimed to explore the precise mechanism and signaling pathways of mesangial cell (MC) proliferation from a new point of view considering Connexin 43 (Cx43). METHODS: MC proliferation was measured by the incorporation of 3H-thymidine (3H-TdR). Cx43 was over-expressed in MC cells using lipofectamine 2000, and the expression level was tested with reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses. The gap junction channel function was explored by Lucifer Yellow scrape loading and dye transfer (SLDT), and the intracellular calcium concentrations ([Ca(2+)]i) were characterized by confocal microscopy on cells loaded with Fura-3/AM. RESULTS: There was an inverse correlation between Cx43 expression and MC proliferation (P<0.05). SLDT studies revealed that there was no difference in the gap junction channel function between the normal and Aldosterone (Aldo)-stimulated groups (P>0.05). Our data also showed that the mineralcorticoid receptor (MR) antagonist spironolactone, ERK1/2 inhibitor PD98059 and PKC inhibitor GF109203X could attenuate the down-regulation of Cx43 expression in Aldo-induced MC proliferation; however, the PI3K inhibitor LY294002 could block MC proliferation without affecting Cx43 expression at either the mRNA or protein level. In addition, Aldo promoted MC proliferation in parallel with increasing [Ca(2+)]i (P<0.05), suggesting that the classical PKC pathway might be activated. CONCLUSIONS: Our study provides preliminary evidence that Cx43 is an important regulator of Aldo-promoted MC proliferation. Furthermore, reduced Cx43 expression promoted MC proliferation independent of the gap junction channel function, and this process might be mediated through the ERK1/2- and PKC-dependent pathways.


Assuntos
Aldosterona/farmacologia , Conexina 43/genética , Células Mesangiais/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase C/genética , Animais , Benzofuranos , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Conexina 43/metabolismo , Flavonoides/farmacologia , Corantes Fluorescentes , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Indóis/farmacologia , Isoquinolinas , Maleimidas/farmacologia , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Espironolactona/farmacologia
11.
BMC Nephrol ; 16: 60, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25899529

RESUMO

BACKGROUND: The objective of this study was to investigate the influence of ß2-microglobulin (ß2-M) on the epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells. METHODS: A human kidney proximal tubular cell line (HK-2) was used as the proximal tubular cell model. HK-2 cells were exposed to different concentrations of ß2-M (5, 10, 25, and 50 µM) for up to 24, 48 and 72 h. The effects of ß2-M on cell morphology were observed by phase contrast microscopy, and the possible associated mechanisms were assessed by immunofluorescence staining, western blot, RNA interference, immunoprecipitation, and induced coupled plasma mass spectroscopy. RESULTS: ß2-M induced marked morphological alterations in the HK-2 cells, accompanied by the increased expression of extracellular matrix components and α-smooth muscle actin (α-SMA), vimentin and fibronectin and the reduced expression of E-cadherin. Our results also revealed that ß2-M could induce the EMT in the HK-2 cells without significant affecting cell viability. Excess ß2-M in the HK-2 cells led to a decrease in iron and an increase in hypoxia inducible factor-1α (HIF-1α), which induced EMT in the HK-2 cells. Additionally, disrupting the function of the ß2-M/hemochromatosis (HFE) complex by HFE knockdown was sufficient to reverse ß2-M-mediated EMT in the HK-2 cells. CONCLUSION: These findings demonstrate that the activity of ß2-M is mediated by the ß2-M/HFE complex, which regulates intracellular iron homeostasis and HIF-1α and ultimately induces EMT in HK2 cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Microglobulina beta-2/farmacologia , Actinas/efeitos dos fármacos , Actinas/metabolismo , Western Blotting , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Fibronectinas/efeitos dos fármacos , Fibronectinas/metabolismo , Técnicas de Silenciamento de Genes , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunoprecipitação , Técnicas In Vitro , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Espectrometria de Massas , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia de Contraste de Fase , Interferência de RNA , Vimentina/efeitos dos fármacos , Vimentina/metabolismo
12.
Biochem Biophys Res Commun ; 443(3): 1028-34, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24365148

RESUMO

Both brown adipose tissue and skeletalmuscle have abundant mitochondria and energy consumption capacity. They are similar in origin and gain different potential of energy metabolism after differentiation and maturation. The mechanism that cause the difference is not yet fully understood. Long non-coding RNAs (lncRNAs) which comprise the bulk of the human non-coding transcriptome have been proved to play key roles in various biological processes. Whether they will have a function on the differentiation and energy metabolism between BAT and skeletalmuscle is still unknown. To identify the cellular long noncoding RNAs (lncRNAs) involved in the progress, we used the next generation transcriptome sequencing and microarray techniques, and investigated 704 up-regulated and 896 down-regulated lncRNAs (fold-change >3.0) in BAT by comparing the expression profile. Furthermore, we reported AK003288 associated with junctophilin 2 (Jph2) gene which may affect energy metabolism. This study show distinct expression profiles of LncRNAs between brown adipose tissue and skeletal muscle which provide information for further research on differentiation of adipocyte and transdifferentiation between BAT and skeletalmuscle that will be helpful to find a new therapeutic target for combatting obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , RNA Longo não Codificante/genética , Animais , Biologia Computacional , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
13.
Chin Med J (Engl) ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445356

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS: We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS: Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS: Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.

14.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Fator 1 de Crescimento de Fibroblastos , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/genética , Fator 1 de Crescimento de Fibroblastos/genética , Instabilidade Genômica , Rim
15.
Br J Pharmacol ; 181(17): 3098-3117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38698737

RESUMO

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.


Assuntos
Angiotensina II , Fibrose , Hipertensão , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Vimentina , Animais , Angiotensina II/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fibrose/induzido quimicamente , Camundongos , Humanos , Vimentina/metabolismo , Masculino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Camundongos Knockout , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética
16.
J Nephrol ; 36(5): 1283-1291, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36800104

RESUMO

Acute kidney disease (AKD) involves multiple pathogenic mechanisms,  including maladaptive repair of renal cells that are rich in mitochondria. Maintenance of mitochondrial homeostasis and quality control is crucial for normal kidney function. Mitochondrial quality control serves to maintain mitochondrial function under various conditions, including mitochondrial bioenergetics, mitochondrial biogenesis, mitochondrial dynamics (fusion and fission) and mitophagy. To date, increasing evidence indicates that mitochondrial quality control is disrupted when acute kidney disease develops. This review describes the mechanisms of mitochondria quality control in acute kidney disease, aiming to provide clues to help design new clinical treatments.


Assuntos
Nefropatias , Mitocôndrias , Humanos , Mitocôndrias/patologia , Rim , Mitofagia , Doença Aguda , Dinâmica Mitocondrial
17.
PLoS One ; 18(10): e0293043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856510

RESUMO

Podocyte injury plays a key role in the production of proteinuria and is closely related to the progression of chronic kidney disease (CKD). Alleviating podocyte injury is beneficial to prevent the occurrence and development of CKD. tRNA-derived RNA fragments (tRFs) are associated with podocytes injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton. Our previous data showed that tRF-003634 tightly correlated with podocyte injury, while its effect remains unclear. This study aimed to investigate the role of tRF-003634 in podocyte injury and the potential mechanisms. The expression level of tRF-003634, nephrin, podocin and tRF-003634 targeted toll-like receptor 4 (TLR4) in podocytes and kidney tissues were examined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The biochemical indices were monitored and renal pathological changes were assessed by hematoxylin and eosin PAS staining. Furthermore, potential target genes of tRF-003634 were screened using high-throughput mRNA sequencing, and then confirmed by RNA pulse-chase analysis. The results showed that tRF-003634 was downregulated in adriamycin (Adr)-induced podocyte injury. Overexpression of tRF-003634 increased the expression of nephrin and podocin in vivo and in vitro and alleviated podocyte injury. Meanwhile, overexpression of tRF-003634 alleviated proteinuria and renal pathological damage. In addition, high-throughput sequencing after overexpression of tRF-003634 showed that TLR4 might be a downstream target gene. tRF-003634 can alleviate podocyte injury by reducing the stability of TLR4 mRNA, possibly by competing with TLR4 mRNA to bind to YTH domain-containing protein 1 (YTHDC1). In conclusion, tRF-003634 was underexpressed in Adr-induced podocyte injury, and its overexpression alleviated podocyte injury in vitro and in vivo by reducing the stability of TLR4 mRNA.


Assuntos
Podócitos , Insuficiência Renal Crônica , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Podócitos/metabolismo , Proteinúria/patologia , Insuficiência Renal Crônica/patologia , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
Exp Ther Med ; 25(1): 26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36561608

RESUMO

Transfer RNA-derived fragments (tRFs), a novel class of small non-coding RNA produced by the cleavage of pre- and mature tRNAs, are involved in various diseases. Renal tubulointerstitial fibrosis is a common final pathway in diabetic nephropathy (DN) in which hyperglycemia-induced tubular extracellular matrix (ECM) accumulation serves a vital role. The present study aimed to detect and investigate the role of tRFs in the accumulation of tubular ECM. Differentially expressed tRFs were analysed with high-throughput sequencing in primary mouse tubular epithelial cells treated with high glucose (HG). The Gene Ontology (GO) was used to analyze the potential molecular functions of these differentially expressed tRFs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the associated signaling pathways involved in these differentially expressed tRFs. tRF-1:30-Gln-CTG-4 was overexpressed using tRF-1:30-Gln-CTG-4 mimic, followed by HG treatment. A total of 554 distinct tRFs were detected and 64 differentially expressed tRFs (fold change >2; P<0.05) were identified in tubular epithelial cells following high glucose (HG) treatment, among which 27 were upregulated and 37 were downregulated. Ten selected tRFs with the greatest difference (fold change >2; P<0.05) were verified to be consistent with small RNA-sequencing data, of which tRF-1:30-Gln-CTG-4 showed the most pronounced difference in expression and was significantly decreased in response to HG. GO analysis indicated that the differentially expressed tRFs were associated with 'cellular process', 'biological regulation' and 'metabolic process'. An analysis of the KEGG database suggested that these differentially expressed tRFs were involved in 'autophagy' and signaling pathways for 'forkhead box O', 'the mammalian target of rapamycin' and 'mitogen-activated protein kinase'. Finally, the overexpression of tRF-1:30-Gln-CTG-4 ameliorated HG-induced ECM accumulation in tubular epithelial cells. Therefore, the present study demonstrated that there may be a significant association between tRFs and HG-induced ECM accumulation in tubular epithelial cells; these differentially expressed tRFs warrant further study to explore the pathogenesis of DN.

19.
Exp Ther Med ; 26(1): 311, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273759

RESUMO

Diabetic nephropathy (DN) is one of the most important causes of end-stage renal disease and current treatments are ineffective in preventing its progression. Transfer RNA (tRNA)-derived fragments (tRFs), which are small non-coding fragments derived from tRNA precursors or mature tRNAs, have a critical role in various human diseases. The present study aimed to investigate the expression profile and potential functions of tRFs in DN. High-throughput sequencing technology was employed to detect the differential serum levels of tRFs between DN and diabetes mellitus and to validate the reliability of the sequencing results using reverse transcription-quantitative PCR. Ultimately, six differentially expressed (DE) tRFs were identified (P<0.05; |log2fold change| ≥1), including three upregulated (tRF5-GluCTC, tRF5-AlaCGC and tRF5-ValCAC) and three downregulated tRFs (tRF5-GlyCCC, tRF3-GlyGCC and tRF3-IleAAT). Potential functions and regulatory mechanisms of these DE tRFs were further evaluated using an applied bioinformatics-based analysis. Gene ontology analysis revealed that the DE tRFs are mainly enriched in biological processes, including axon guidance, Rad51 paralog (Rad51)B-Rad51C-Rad51D-X-Ray repair cross-complementing 2 complex, nuclear factor of activated T-cells protein binding and fibroblast growth factor-activated receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that they are associated with axon guidance, neurotrophin signaling, mTOR signaling, AMPK signaling and epidermal growth factor receptor family signaling pathways. In conclusion, the present findings indicated that tRFs were DE in DN and may be involved in the regulation of DN pathology through multiple pathways, thereby providing a new perspective for the study of DN therapeutic targets.

20.
Biochem Biophys Res Commun ; 420(4): 755-61, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22450314

RESUMO

Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/imunologia , Engenharia de Proteínas , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Células HEK293 , Doença de Mão, Pé e Boca/prevenção & controle , Doença de Mão, Pé e Boca/virologia , Humanos , Coelhos , Transfecção , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA