Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421874

RESUMO

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulina/metabolismo , Proteômica , Lipidômica , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Exocitose , Vesículas Secretórias/metabolismo , Grânulos Citoplasmáticos/metabolismo
2.
Mol Metab ; 31: 150-162, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918917

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) play an integral role in maintaining beta cell function and identity. Deciphering their targets and precise role, however, remains challenging. In this study, we aimed to identify miRNAs and their downstream targets involved in the regeneration of islet beta cells following partial pancreatectomy in mice. METHODS: RNA from laser capture microdissected (LCM) islets of partially pancreatectomized and sham-operated mice were profiled with microarrays to identify putative miRNAs implicated in beta cell regeneration. Altered expression of the selected miRNAs, including miR-132, was verified by RT-PCR. Potential targets of miR-132 were selected through bioinformatic data mining. Predicted miR-132 targets were validated for their changed RNA, protein expression levels, and signaling upon miR-132 knockdown and/or overexpression in mouse MIN6 and human EndoC-ßH1 insulinoma cells. The ability of miR-132 to foster beta cell proliferation in vivo was further assessed in pancreatectomized miR-132-/- and control mice. RESULTS: Partial pancreatectomy significantly increased the number of BrdU+/insulin+ islet cells. Microarray profiling revealed that 14 miRNAs, including miR-132 and -141, were significantly upregulated in the LCM islets of the partially pancreatectomized mice compared to the LCM islets of the control mice. In the same comparison, miR-760 was the only downregulated miRNA. The changed expression of these miRNAs in the islets of the partially pancreatectomized mice was confirmed by RT-PCR only in the case of miR-132 and -141. Based on previous knowledge of its function, we focused our attention on miR-132. Downregulation of miR-132 reduced the proliferation of MIN6 cells while enhancing the levels of pro-apoptotic cleaved caspase-9. The opposite was observed in miR-132 overexpressing MIN6 cells. Microarray profiling, RT-PCR, and immunoblotting of the latter cells demonstrated their downregulated expression of Pten with concomitant increased levels of pro-proliferative factors phospho-Akt and phospho-Creb and inactivation of pro-apoptotic Foxo3a via its phosphorylation. Downregulation of Pten was further confirmed in the LCM islets of pancreatectomized mice compared to the sham-operated mice. Moreover, overexpression of miR-132 correlated with increased proliferation of EndoC-ßH1 cells. The regeneration of beta cells following partial pancreatectomy was lower in the miR-132/212-/- mice than the control littermates. CONCLUSIONS: This study provides compelling evidence about the critical role of miR-132 for the regeneration of mouse islet beta cells through the downregulation of its target Pten. Hence, the miR-132/Pten/Akt/Foxo3 signaling pathway may represent a suitable target to enhance beta cell mass.


Assuntos
Proteína Forkhead Box O3/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA