Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microb Pathog ; 183: 106280, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541555

RESUMO

Antibiotic resistant bacteria are immune to most antibiotics and are therefore very difficult to treat and in most cases lead to death. As such there is a pressing need for alternative and more efficient antibacterial drugs which can target these drug-resistant strains as well. The objective of this research work was to investigate the antibacterial properties of Thymus linearis essential oil (EO) against multiple disease-causing bacterial pathogens. Additionally, the study aimed to examine the molecular docking and molecular dynamic (MD) simulations of the primary components of the EO with the essential bacterial proteins and enzymes. Gas chromatography-mass spectrometry was employed to analyse the chemical composition of Thymus linearis EO. The initial screening for antibacterial properties involved the use of disc diffusion and microdilution techniques. Molecular docking studies were conducted utilising Autodock Vina. The outcomes were subsequently visualised through BIOVIA Discovery Studio. MD simulations were conducted using iMODS, an internet-based platform designed for MD simulations. The essential oil (EO) was found to contain 26 components, with thymol, carvacrol, p-cymene, and γ-terpinene being the primary constituents. The study findings revealed that Thymus linearis EO demonstrated antibacterial effects that were dependent on both the dose and time. The results of molecular docking studies revealed that the primary constituents of the EO, namely thymol, carvacrol, and p-cymene, exhibited robust interactions with the active site of the bacterial DNA gyrase enzyme. This finding provides an explanation for the antibacterial mechanism of the EO. The results indicate that Thymus linearis EO possesses potent antibacterial properties against the MDR microorganisms. Molecular docking analyses revealed that the essential oil's primary components interact with the amino acid residues of the DNA-Gyrase B enzyme, resulting in a favourable docking score.


Assuntos
Óleos Voláteis , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Timol , Simulação de Acoplamento Molecular , DNA Girase , Novobiocina , Antibacterianos/farmacologia
2.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691412

RESUMO

Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.


Gut microbiota plays an essential role in regulating the immune checkpoint therapyCarotenoids are promising molecules in the alteration of gut microbiotaCarotenoids activate the immune cells resulting in a low incidence of oxidative stress.

3.
Prostate ; 80(13): 1045-1057, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687658

RESUMO

BACKGROUND: There is a need to develop novel therapies which could be beneficial to patients with prostate cancer (CaP) including those who are predisposed to poor outcome, such as African-Americans. This study investigates the role of ROBO1-pathway in predicting outcome and race-based disparity in patients with CaP. METHODS AND RESULTS: Aided by RNA sequencing-based DECIPHER-testing and immunohistochemical (IHC) analysis of tumors we show that ROBO1 is lost during the progressive stages of CaP, a prevalent feature in African-Americans. We show that the loss of ROBO1 predicts high-risk of recurrence, metastasis and poor outcome of androgen-deprivation therapy in radical prostatectomy-treated patients. These data identified an aggressive ROBO1deficient /DOCK1+ve sub-class of CaP. Combined genetic and IHC data showed that ROBO1 loss is accompanied by DOCK1/Rac1 elevation in grade-III/IV primary-tumors and Mets. We observed that the hypermethylation of ROBO1-promoter contributes to loss of expression that is highly prevalent in African-Americans. Because of limitations in restoring ROBO1 function, we asked if targeting the DOCK1 could be an ideal strategy to inhibit progression or treat ROBO1deficient metastatic-CaP. We tested the pharmacological efficacy of CPYPP, a selective inhibitor of DOCK1 under in vitro and in vivo conditions. Using ROBO1-ve and ROBO1+ve CaP models, we determined the median effective concentration of CPYPP for growth. DOCK1-inhibitor treatment significantly decreased the (a) Rac1-GTP/ß-catenin activity, (b) transmigration of ROBO1deficient cells across endothelial lining, and (c) metastatic spread of ROBO1deficient cells through the vasculature of transgenicfl Zebrafish model. CONCLUSION: We suggest that ROBO1 status forms as predictive biomarker of outcome in high-risk populations such as African-Americans and DOCK1-targeting therapy has a clinical potential for treating metastatic-CaP.


Assuntos
Negro ou Afro-Americano/genética , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Receptores Imunológicos/genética , Proteínas rac de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA , Disparidades nos Níveis de Saúde , Humanos , Imuno-Histoquímica , Masculino , Metástase Neoplásica , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Regiões Promotoras Genéticas , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Receptores Imunológicos/biossíntese , Receptores Imunológicos/deficiência , População Branca/genética , Peixe-Zebra , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Roundabout
4.
Mol Carcinog ; 59(8): 886-896, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32291806

RESUMO

Inhibiting the disease progression in KRAS-driven cancers after diagnosis has been a difficult task for clinicians to manage due to the lack of effective intervention/preventive therapies. KRAS-driven cancers depend on sustained KRAS signaling. Although developing inhibitors of KRAS signaling has proven difficult in the past, the quest for identifying newer agents has not stopped. Based on studies showing terpenoids as modulators of KRAS-regulated downstream molecular pathways, we asked if this chemical family has an affinity of inhibiting KRAS protein activity. Using crystal structure as a bait in silico, we identified 20 terpenoids for their KRAS protein-binding affinity. We next carried out biological validation of in silico data by employing in situ, in vitro, patient-derived explant ex vivo, and KPC transgenic mouse models. In this report, we provide a comprehensive analysis of a lup-20(29)-en-3b-ol (lupeol) as a KRAS inhibitor. Using nucleotide exchange, isothermal titration calorimetry, differential scanning fluorimetry, and immunoprecipitation assays, we show that lupeol has the potential to reduce the guanosine diphosphate/guanosine triphosphate exchange of KRAS protein including mutant KRASG12V . Lupeol treatment inhibited the KRAS activation in KRAS-activated cell models (NIH-panel, colorectal, lung, and pancreatic intraepithelial neoplasia) and patient tumor explants ex vivo. Lupeol reduced the three-dimensional growth of KRAS-activated cells. The pharmacokinetic analysis showed the bioavailability of lupeol after consumption via oral and intraperitoneal routes in animals. Tested under prevention settings, the lupeol consumption inhibited the development of pancreatic intraepithelial neoplasia in LSL-KRASG12D/Pdx-cre mice (pancreatic ductal adenocarcinoma progression model). These data suggest that the selected members of the triterpene family (such as lupeol) could be exploited as clinical agents for preventing the disease progression in KRAS-driven cancers which however warrants further investigation.


Assuntos
Anti-Inflamatórios/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias Pancreáticas/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Transformação Celular Neoplásica/patologia , Progressão da Doença , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
5.
Mol Cancer Ther ; 19(12): 2598-2611, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32999046

RESUMO

S100A4 oncoprotein plays a critical role during prostate cancer progression and induces immunosuppression in host tissues. We hypothesized that S100A4-regulated oncogenic activity in immunosuppressed prostate tumors promotes growth of neoplastic cells, which are likely to become aggressive. In the current study, we investigated whether biopsy-S100A4 gene alteration independently predicts the outcome of disease in patients and circulatory-S100A4 is druggable target for treating immunosuppressive prostate cancer. Aided by DECIPHER-genomic test, we show biopsy-S100A4 overexpression as predictive of (i) poor ADT response and (ii) high risk of mortality in 228 radical prostatectomy-treated patients. Furthermore, analysis of tumor genome data of more than 1,000 patients with prostate cancer (PRAD/SU2C/FHCRC studies) validated the association of S100A4-alteration to poor survival and metastasis. We show that increased serum-S100A4 levels are associated to the prostate cancer progression in patients. The prerequisite for metastasis is the escape of tumor cells via vascular system. We show that extracellular-S100A4 protein as a growth factor induces vascular transmigration of prostate cancer cells and bone demineralization thus forms an ideal target for therapies for treating prostate cancer. By employing surface plasmon resonance and isothermal titration calorimetry, we show that mab6B12 antibody interacts with and neutralizes S100A4 protein. When tested for therapeutic efficacy, the mab6B12 therapy reduced the (i) osteoblastic demineralization of bone-derived MSCs, (ii) S100A4-target (NFκB/MMP9/VEGF) levels in prostate cancer cells, and (iii) tumor growth in a TRAMPC2 syngeneic mouse model. The immuno-profile analysis showed that mAb6B12-therapy (i) shifted Th1/Th2 balance (increased Stat4+/T-bet+ and decreased GATA2+/CD68+/CD45+/CD206+ cells); (ii) modulated cytokine levels in CD4+ T cells; and (iii) decreased levels of IL5/6/12/13, sTNFR1, and serum-RANTES. We suggest that S100A4-antibody therapy has clinical applicability in treating immunosuppressive prostate cancer in patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunomodulação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Proteína A4 de Ligação a Cálcio da Família S100/antagonistas & inibidores , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Humanos , Biópsia Líquida , Contagem de Linfócitos , Masculino , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/etiologia , Proteína A4 de Ligação a Cálcio da Família S100/sangue , Proteína A4 de Ligação a Cálcio da Família S100/genética , Resultado do Tratamento
6.
Transl Oncol ; 12(8): 1056-1071, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31174057

RESUMO

Therapy failure and metastasis-associated mortality are stumbling blocks in the management of PDAC in patients. Failure of therapy is associated to intense hypoxic conditions of tumors. To develop effective therapies, a complete understanding of hypoxia-associated changes in genetic landscape of tumors during disease progression is needed. Because artificially immortalized cell lines do not rightly represent the disease progression, studying genetics of tumors in spontaneous models is warranted. In the current study, we generated a spectrum of spontaneous human (UM-PDC1; UM-PDC2) and murine (HI-PanL, HI-PancI, HI-PanM) models representing localized, invasive, and metastatic PDAC from a patient and transgenic mice (K-rasG12D/Pdxcre/Ink4a/p16-/). These spontaneous models grow vigorously under hypoxia and exhibit activated K-ras signaling, progressive loss of PTEN, and tumorigenicity in vivo. Whereas UM-PDC1 form localized tumors, the UM-PDC2 metastasize to lungs in mice. In an order of progression, these models exhibit genomic instability marked by gross chromosomal rearrangements, centrosome-number variations, Aurora-kinase/H2AX colocalization, loss of primary cilia, and α-tubulin acetylation. The RNA sequencing of hypoxic models followed by qRT-PCR validation and gene-set enrichment identified Intestine-Specific Homeobox factor (ISX)-driven molecular pathway as an indicator PDAC aggressivness. TCGA-PAAD clinical data analysis showed high ISX expression correlation to poor survival of PDAC patients, particularly women. The functional studies showed ISX as a regulator of i) invasiveness and migratory potential and ii) VEGF, MMP2, and NFκB activation in PDAC cells. We suggest that ISX is a potential druggable target and newly developed spontaneous cell models are valuable tools for studying mechanism and testing therapies for PDAC.

7.
Mol Cancer Ther ; 18(11): 2111-2123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467179

RESUMO

Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise de Sobrevida , Transcrição Gênica
8.
Clin Cancer Res ; 24(24): 6421-6432, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30087142

RESUMO

PURPOSE: Metastasis is the major cause of mortality in prostate cancer patients. Factors such as genetic makeup and race play critical role in the outcome of therapies. This study was conducted to investigate the relevance of BMI1 in metastatic prostate cancer disease in Caucasian and African-Americans. EXPERIMENTAL DESIGN: We employed race-specific prostate cancer models, clinical specimens, clinical data mining, gene-microarray, transcription-reporter assay, chromatin-immunoprecipitation (ChIP), IHC, transgenic-(tgfl/fl) zebrafish, and mouse metastasis models. RESULTS: BMI1 expression was observed to be elevated in metastatic tumors (lymph nodes, lungs, bones, liver) of Caucasian and African-American prostate cancer patients. The comparative analysis of stage III/IV tumors showed an increased BMI1 expression in African-Americans than Caucasians. TCGA and NIH/GEO clinical data corroborated to our findings. We show that BMI1 expression (i) positively correlates to metastatic (MYC, VEGF, cyclin D1) and (ii) negative correlates to tumor suppressor (INKF4A/p16, PTEN) levels in tumors. The correlation was prominent in African-American tumors. We show that BMI1 regulates the transcriptional activation of MYC, VEGF, INKF4A/p16, and PTEN. We show the effect of pharmacological inhibition of BMI1 on the metastatic genome and invasiveness of tumor cells. Next, we show the anti-metastatic efficacy of BMI1-inhibitor in transgenic zebrafish and mouse metastasis models. Docetaxel as monotherapy has poor outcome on the growth of metastatic tumors. BMI1 inhibitor as an adjuvant improved the taxane therapy in race-based in vitro and in vivo models. CONCLUSIONS: BMI1, a major driver of metastasis, represents a promising therapeutic target for treating advanced prostate cancer in patients (including those belonging to high-risk group).


Assuntos
Biomarcadores Tumorais , Negro ou Afro-Americano , Complexo Repressor Polycomb 1/genética , Neoplasias da Próstata/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Docetaxel/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , População Branca , Peixe-Zebra
9.
PLoS One ; 6(11): e27590, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110681

RESUMO

Eis protein is reported to enhance the intracellular survival of Mycobacterium tuberculosis in human macrophages. Eis protein is not only known to skew away the immunity by disturbing the protective T(H)1 response, but aminoglycoside acetyltransferase activity of Eis is reported to regulate autophagy, inflammation and cell death. Here we have gained insight into the structure-function properties of Eis. Eis protein is a hexameric αß protein. Although urea and guanidinium hydrochloride (GdmCl) was found to induce one-step unfolding of Eis but size exclusion chromatography showed that GdmCl treated Eis maintained its hexameric form. SDS-PAGE assay confirmed that hexameric form of Eis is partially stable to SDS and converts into trimers and monomers. Out of these three forms, aminoglycoside acetyltransferase activity is found to be associated only with hexamers. The Tm of Eis was found to be ∼75°C. Aminoglycoside acetyltransferase Eis demonstrated remarkable heat stability retaining >80% of their activity at 70°C which falls down to ∼50% at 75°C and is completely inactive at 80°C. Further, intracellular survival assay with heated samples of M. smegmatis harboring eis gene of M. tuberculosis H37Rv demonstrated a possible role for the thermostability associated with Eis protein in the enhanced intracellular survival within macrophages. In sum, these data reveal that only hexameric form of Eis has a thermostable aminoglycoside acetyltransferase activity. This is the first report showing the thermostability associated with aminoglycoside acetyltransferase activity of Eis protein being one of the essential features for the execution of its biological role.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espaço Intracelular/microbiologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Multimerização Proteica , Temperatura , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Guanidina/farmacologia , Humanos , Espaço Intracelular/metabolismo , Viabilidade Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Espectrometria de Fluorescência , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA