Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 135, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411801

RESUMO

Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces. One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials. MXenes, a new family of 2D nanomaterials, have been drawing attention since the last decade due to their high electronic conductivity, processability, mechanical robustness and chemical tunability. In this review, we encompass the fabrication of MXene-based polymeric nanocomposites, their structure-property relationship, and applications in the flexible sensor domain. Moreover, our discussion is not only limited to sensor design, their mechanism, and various modes of sensing platform, but also their future perspective and market throughout the world. With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.

2.
Biomater Adv ; 162: 213921, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870740

RESUMO

Eco-friendly nanotechnology-enabled biopolymers are one of the novel concepts of packaging materials to substitute traditional synthetic polymers and their composites. This article succinctly reviews the recent developments of introducing additional functionalities to biopolymers using metal and metal oxide nanoparticles. The functionality of metal nanoparticles such as silver, zinc oxide, titanium dioxide, copper oxide, gold, and magnesium oxide, as food packaging materials were discussed. The addition of nanoparticles in biopolymers improves mechanical properties, gas barrier properties, durability, temperature stability, moisture stability, antimicrobial activity, antioxidant property, and UV absorbance and can prevent the presence of ethylene and oxygen, hence extending the shelf life of foodstuffs. Other than this, the functional activity of these biopolymer composite films helps them to act like smart or intelligent packaging. The selection of metal nanoparticles, particle migration, toxicological effect, and potential future scope in the food packaging industry are also reviewed.


Assuntos
Embalagem de Alimentos , Nanopartículas Metálicas , Embalagem de Alimentos/métodos , Biopolímeros/química , Nanopartículas Metálicas/química , Nanocompostos/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia
3.
Small Methods ; : e2400812, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044713

RESUMO

Stimuli-responsive shape-morphing hydrogels with self-healing and tunable physiochemical properties are excellent candidates for functional building blocks of untethered small-scale soft robots. With mechanical properties similar to soft organs and tissues, such robots enable minimally invasive medical procedures, such as cargo/cell transportation. In this work, responsive hydrogels based on zwitterionic/acrylate chemistry with self-healing and stimuli-responsiveness are synthesized. Such hydrogels are then judiciously cut and pasted to form hybrid constructs with predetermined swelling and elastic anisotropy. This method is used to program hydrogel constructs with predetermined 2D-to-3D deformation upon exposure to different environmental ionic strengths. Untethered soft robotic functionalities are demonstrated, such as actuation, magnetic locomotion, and targeted transport of soft and light cargo in flooded media. The proposed hydrogel expands the repertoire of functional materials for fabricating small-scale soft robots.

4.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138344

RESUMO

The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA