Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 786-802.e28, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36754049

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.


Assuntos
Esclerose Lateral Amiotrófica , Fosfatidilinositol 3-Quinases , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores , Mutação , Proteína FUS de Ligação a RNA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças
2.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482083

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Assuntos
Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Degeneração Neural/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Morte Celular , Células Cultivadas , Córtex Cerebral/patologia , Cromatina/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Drosophila , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estabilidade Proteica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
3.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373831

RESUMO

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mapas de Interação de Proteínas , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neurônios/metabolismo , Transporte Proteico
4.
Cell ; 171(5): 994-1000, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149615

RESUMO

Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.


Assuntos
Doenças Neurodegenerativas/genética , Biossíntese de Proteínas , Animais , Códon de Iniciação , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Doenças Neurodegenerativas/metabolismo , Fases de Leitura Aberta , Sequências Reguladoras de Ácido Ribonucleico , Expansão das Repetições de Trinucleotídeos
5.
RNA ; 28(2): 123-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848561

RESUMO

GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-containing RNA is translated into dipeptide repeat (DPR) proteins, some of which are neurotoxic. Using dynamic ribosome profiling, we identified three translation initiation sites in the intron upstream of (G4C2) repeats; these sites are detected irrespective of the presence or absence of the repeats. During translocation, ribosomes appear to be stalled on the repeats. An AUG in the preceding C9ORF72 exon initiates a uORF that inhibits downstream translation. Polysome isolation indicates that unspliced (G4C2) repeat-containing RNA is a substrate for DPR protein synthesis. (G4C2) repeat-containing RNA translation is 5' cap-independent but inhibited by the initiation factor DAP5, suggesting an interplay with uORF function. These results define novel translational mechanisms of expanded (G4C2) repeat-containing RNA in disease.


Assuntos
Proteína C9orf72/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , Ribossomos/metabolismo , Proteína C9orf72/metabolismo , Repetições de Dinucleotídeos , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
FASEB J ; 37(5): e22927, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086087

RESUMO

miR-184 is one of the most abundant miRNAs expressed in the lens and corneal tissue. Mutations in the seed region of miR-184 are responsible for inherited anterior segment dysgenesis. Animal models recapitulating miR-184-related anterior segment dysgenesis are still lacking, and the molecular basis of ocular abnormalities caused by miR-184 dysfunction has not been well elucidated in vivo. In the present study, we constructed a miR-184-/- zebrafish line by destroying both two dre-mir-184 paralogs with CRISPR-Cas9 technology. Although there were no gross developmental defects, the miR-184-/- zebrafish displayed microphthalmia and cataract phenotypes. Cytoskeletal abnormalities, aggregation of γ-crystallin, and lens fibrosis were induced in miR-184-/- lenses. However, no obvious corneal abnormalities were observed in miR-184-/- zebrafish. Instead of apoptosis, deficiency of miR-184 led to aberrant cell proliferation and a robust increase in p21 levels in zebrafish eyes. Inhibition of p21 by UC2288 compromised the elevation of lens fibrosis markers in miR-184-/- lenses. RNA-seq demonstrated that levels of four transcriptional factors HSF4, Sox9a, CTCF, and Smad6a, all of which could suppress p21 expression, were reduced in miR-184-/- eyes. The predicted zebrafish miR-184 direct target genes (e.g., atp1a3a and nck2a) were identified and verified in miR-184-/- eye tissues. The miR-184-/- zebrafish is the first animal model mimicking miR-184-related anterior segment dysgenesis and could broaden our understanding of the roles of miR-184 in eye development.


Assuntos
Catarata , Cristalino , MicroRNAs , Animais , Catarata/genética , Catarata/metabolismo , Cristalino/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
7.
BMC Neurol ; 24(1): 206, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886633

RESUMO

BACKGROUND: Mutations in the SLC5A7 gene cause congenital myasthenia, a rare genetic disorder. Mutation points in the SLC5A7 gene differ among individuals and encompass various genetic variations; however, exon deletion variants have yet to be reported in related cases. This study aims to explore the clinical phenotype and genetic traits of a patient with congenital myasthenic syndrome due to SLC5A7 gene variation and those of their family members. CASE PRESENTATION: We describe a case of a Chinese male with congenital myasthenic syndrome presenting fluctuating limb weakness. Genetic testing revealed a heterozygous deletion mutation spanning exons 1-9 in the SLC5A7 gene. QPCR confirmed a deletion in exon 9 of the SLC5A7 gene in the patient's mother and brother. Clinical symptoms of myasthenia improved following treatment with pyridostigmine. CONCLUSION: Exons 1, 5, and 9 of the SLC5A7 gene encode the choline transporter's transmembrane region. Mutations in these exons can impact the stability and plasma membrane levels of the choline transporter. Thus, a heterozygous deletion in exons 1-9 of the SLC5A7 gene could be the pathogenic cause for this patient. In patients exhibiting fluctuating weakness, positive RNS, and seronegativity for myasthenia gravis antibodies, a detailed family history should be considered, and enhanced genetic testing is recommended to determine the cause.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/diagnóstico , Masculino , Mutação , Linhagem , Adulto , Testes Genéticos/métodos , Feminino , Simportadores/genética
8.
Cell Biol Toxicol ; 40(1): 72, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162885

RESUMO

Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.


Assuntos
Morte Celular , Metais , Espécies Reativas de Oxigênio , Humanos , Morte Celular/efeitos dos fármacos , Metais/toxicidade , Metais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Íons/metabolismo , Homeostase/efeitos dos fármacos , Apoptose/efeitos dos fármacos
9.
Hum Genet ; 142(8): 1263-1270, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37085629

RESUMO

Exocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis. Exocyst subunits are essential for cell viability; and mutations or variants in several exocyst subunits have been implicated in human diseases, mostly neurodevelopmental disorders and ciliopathies. These conditions often share common features such as developmental delay, intellectual disability, and brain abnormalities. In this review, we summarize the mutations and variants in exocyst subunits that have been linked to disease and discuss the implications of exocyst dysfunction in other disorders.


Assuntos
Doenças do Sistema Nervoso , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Citoplasma/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Exocitose/genética , Doenças do Sistema Nervoso/genética
10.
Cell Biol Int ; 47(1): 156-166, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229925

RESUMO

Tumor necrosis factor-α (TNF-α) and heterogenous nuclear ribonucleoprotein L (hnRNPL)-related immunoregulatory lincRNA (THRIL) is a long noncoding RNA (lncRNA) involved in various inflammatory diseases. However, its role in atherosclerosis is not known. In this study, we aimed to investigate the function of THRIL in mediating macrophage inflammation and foam cell formation. The expression of THRIL was quantified in THP-1 macrophages after treatment with oxidized low-density lipoprotein (oxLDL). The effect of THRIL overexpression and knockdown on oxLDL-induced inflammatory responses and lipid accumulation was determined. THRIL-associated protein partners were identified by RNA pull-down and RNA immunoprecipitation assays. We show that THRIL is upregulated in macrophages after oxLDL treatment. Knockdown of THRIL blocks oxLDL-induced expression of interleukin-1ß (IL-1ß), IL-6, and TNF-α and lipid accumulation. Conversely, ectopic expression of THRIL enhances inflammatory gene expression and lipid deposition in oxLDL-treated macrophages. Moreover, THRIL depletion increases cholesterol efflux from macrophages and the expression of ATP-binding cassette transporter (ABC) A1 and ABCG1. FOXO1 is identified as a protein partner of THRIL and promotes macrophage inflammation and lipid accumulation. Furthermore, overexpression of FOXO1 restores lipid accumulation and inflammatory cytokine production in THRIL-depleted macrophages. In conclusion, our data suggest a model where THRIL interacts with FOXO1 to promote macrophage inflammation and foam cell formation. THRIL may represent a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Inflamação , Lipoproteínas LDL , RNA Longo não Codificante , Humanos , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Técnicas de Silenciamento de Genes
11.
Exp Eye Res ; 220: 109110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569519

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease which is the major cause of vision loss. X-linked RP patients account for 5%-15% of all inherited RP cases and mutations in RP2 (Retinitis pigmentosa 2) were responsible for about 20% X-linked RP families. A majority of RP2 pathogenic mutations displayed a vulnerable protein stability and degraded rapidly through ubiquitin-proteasome system (UPS). Though the RP2 protein could be readily recovered by proteasome inhibitors, e.g., MG132, their applications for RP2-related RP therapy were limited by their nonspecific characterization. In the present study, we aimed to identify UPS-related factors, such as E3 ligases, which are specifically involved in degradation of RP2 pathogenic mutants. We identified several E3 ligases, such as HUWE1, and the co-chaperon BAG6 specifically interacting with RP2 pathogenic mutants. Knockdown of HUWE1 and BAG6 could partially rescue the reduced protein levels of RP2 mutants. BAG6 is required for recruitment of HUWE1 to ubiquitinate RP2 mutants at the K268 site. The HUWE1 inhibitor BI8622 could restore the levels of RP2 mutant and then the binding to its partner ARL3 in retina cell lines. This study revealed the details of UPS-related degradation of RP2 mutants and possibly provided a potential treatment for RP2-related RP.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/metabolismo , Retinose Pigmentar/patologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Acta Pharmacol Sin ; 43(1): 133-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758354

RESUMO

N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg-1·d-1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-ß receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-ß1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 µM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-ß/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-ß signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-ß1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-ß signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-ß signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-ß1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.


Assuntos
Haloperidol/análogos & derivados , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Tetracloreto de Carbono/administração & dosagem , Relação Dose-Resposta a Droga , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Células Estreladas do Fígado/metabolismo , Injeções Intraperitoneais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade , Tioacetamida/administração & dosagem , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
13.
Mar Drugs ; 20(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200620

RESUMO

Bacteria growing inside biofilms are more resistant to hostile environments, conventional antibiotics, and mechanical stresses than their planktonic counterparts. It is estimated that more than 80% of microbial infections in human patients are biofilm-based, and biofouling induced by the biofilms of some bacteria causes serious ecological and economic problems throughout the world. Therefore, exploring highly effective anti-biofilm compounds has become an urgent demand for the medical and marine industries. Marine microorganisms, a well-documented and prolific source of natural products, provide an array of structurally distinct secondary metabolites with diverse biological activities. However, up to date, only a handful of anti-biofilm natural products derived from marine microorganisms have been reported. Meanwhile, it is worth noting that some promising antifouling (AF) compounds from marine microbes, particularly those that inhibit settlement of fouling invertebrate larvae and algal spores, can be considered as potential anti-biofilm agents owing to the well-known knowledge of the correlations between biofilm formation and the biofouling process of fouling organisms. In this review, a total of 112 anti-biofilm, anti-larval, and anti-algal natural products from marine microbes and 26 of their synthetic analogues are highlighted from 2000 to 2021. These compounds are introduced based on their microbial origins, and then categorized into the following different structural groups: fatty acids, butenolides, terpenoids, steroids, phenols, phenyl ethers, polyketides, alkaloids, flavonoids, amines, nucleosides, and peptides. The preliminary structure-activity relationships (SAR) of some important compounds are also briefly discussed. Finally, current challenges and future research perspectives are proposed based on opinions from many previous reviews.


Assuntos
Organismos Aquáticos/metabolismo , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Humanos , Larva/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 116(19): 9628-9633, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019093

RESUMO

GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One class of major pathogenic molecules in C9ORF72-ALS/FTD is dipeptide repeat proteins such as poly(GR), whose toxicity has been well documented in cellular and animal models. However, it is not known how poly(GR) toxicity can be alleviated, especially in patient neurons. Using Drosophila as a model system in an unbiased genetic screen, we identified a number of genetic modifiers of poly(GR) toxicity. Surprisingly, partial loss of function of Ku80, an essential DNA repair protein, suppressed poly(GR)-induced retinal degeneration in flies. Ku80 expression was greatly elevated in flies expressing poly(GR) and in C9ORF72 iPSC-derived patient neurons. As a result, the levels of phosphorylated ATM and P53 as well as other downstream proapoptotic proteins such as PUMA, Bax, and cleaved caspase-3 were all significantly increased in C9ORF72 patient neurons. The increase in the levels of Ku80 and some downstream signaling proteins was prevented by CRISPR-Cas9-mediated deletion of expanded G4C2 repeats. More importantly, partial loss of function of Ku80 in these neurons through CRISPR/Cas9-mediated ablation or small RNAs-mediated knockdown suppressed the apoptotic pathway. Thus, partial inhibition of the overactivated Ku80-dependent DNA repair pathway is a promising therapeutic approach in C9ORF72-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Reparo do DNA , Demência Frontotemporal , Autoantígeno Ku , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Sequências Repetitivas de Aminoácidos
15.
EMBO J ; 36(20): 2931-2950, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28916614

RESUMO

Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Demência Frontotemporal/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Animais , Fenômenos Fisiológicos Celulares , Demência Frontotemporal/terapia , Humanos
16.
Nature ; 525(7567): 129-33, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26308899

RESUMO

The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Expansão das Repetições de DNA/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fases de Leitura Aberta/genética , Proteínas/genética , Transporte de RNA/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Proteína C9orf72 , Drosophila melanogaster/genética , Olho/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Músculos/citologia , Músculos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Fenótipo , Biossíntese de Proteínas , RNA/genética , RNA/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia
17.
Mol Cell ; 52(2): 264-71, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095276

RESUMO

Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here we identified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accumulation. Among several SNAP receptor (SNARE) genes, Drosophila syntaxin 13 (syx13) exhibited a strong genetic interaction with mutant CHMP2B. Knockdown of syntaxin 13 (STX13) or its binding partner Vti1a in mammalian cells caused LC3-positive puncta to accumulate and blocks autophagic flux. STX13 was present on LC3-positive phagophores induced by rapamycin and was highly enriched on multilamellar structures induced by dysfunctional ESCRT-III. Loss of STX13 also caused the accumulation of Atg5-positive puncta and the formation of multilamellar structures. These results suggest that STX13 is a genetic modifier of ESCRT-III dysfunction and participates in the maturation of phagophores into closed autophagosomes.


Assuntos
Autofagia , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fagossomos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Fagossomos/ultraestrutura , Fenótipo , Proteínas Qa-SNARE/genética , Interferência de RNA , Proteínas de Transporte Vesicular/genética
18.
Appl Opt ; 60(30): 9440-9446, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807084

RESUMO

To avoid exhaustive calibration of the shifter device in point diffraction interferometers, we present a dimension-reduction-based method to reconstruct the phase map from more phase-shifting fringe patterns with three or more frames. The proposed method assumes that the intensity space can be described adequately by the sine and cosine of multiple phase shifts introduced, which are the basis of the intensity space. Then, low-dimensional approximations of high-dimensional intensity spaces are determined by the newly developed reduced basis decomposition technique. Finally, the phase is reconstructed using the low-dimensional surrogates of the intensity spaces without the knowledge of accurate phase steps. Numerical and experimental studies demonstrated that the proposed method outperforms the existing popular phase reconstruction techniques in terms of accuracy and efficiency. Moreover, the performance of the proposed method is not limited by variations in the background and modulation, unlike the existing phase-shifting-algorithm-based approaches.

19.
Hum Mol Genet ; 27(8): 1382-1395, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432529

RESUMO

Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.


Assuntos
Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Demência Frontotemporal/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Regulação da Expressão Gênica , Humanos , Íntrons , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Larva/genética , Larva/metabolismo , Longevidade/genética , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Neurônios/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo
20.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26869642

RESUMO

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/patologia , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Eletromiografia , Embrião não Mamífero , Estresse do Retículo Endoplasmático/genética , Humanos , Camundongos Knockout , Mutação , Neuritos/patologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA