RESUMO
Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3â³, C-11'/C-1â³ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.
Assuntos
Inula , Sesquiterpenos , Inula/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Sesquiterpenos/farmacologia , Sesquiterpenos/químicaRESUMO
Eighteen nitrogen-containing compounds (1-18) were isolated from cultures of the lichen-associated Streptomyces flavidovirens collected from the Qinghai-Tibet Plateau, including seven phenazine derivatives with three new ones, named subphenazines A-C (2-4), two new furan pyrrolidones (8-9), and nine known alkaloids. The structures were elucidated by spectroscopic data analysis, and absolute configurations were determined by single-crystal X-ray diffraction and ECD calculations. The phenazine-type derivatives, in particular compound 3, exhibited significantly better antineuroinflammatory activity than other isolated compounds (8-18). Compound 3 inhibited the release of proinflammatory cytokines including IL-6, TNF-α, and PGE2, and the nuclear translocation of NF-κB; it also reduced the oxidative stress and activated the Nrf2 signaling pathway in LPS-induced BV2 microglia cells. In vivo anti-inflammatory activity in zebrafish indicated that 3 inhibited LPS-stimulated ROS generation. These findings suggested that compound 3 might be a potent antineuroinflammatory agent through the regulation of the NF-κB/Nrf2 signaling pathways.
Assuntos
Anti-Inflamatórios , Líquens , NF-kappa B , Fenazinas , Streptomyces , Peixe-Zebra , Animais , Streptomyces/química , Líquens/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenazinas/farmacologia , Fenazinas/química , Estrutura Molecular , NF-kappa B/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: ⢠Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. ⢠Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. ⢠The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Assuntos
Filogenia , Genoma Mitocondrial , Basidiomycota/genética , Basidiomycota/classificação , DNA Fúngico/genética , Medicina Tradicional Chinesa , Análise de Sequência de DNARESUMO
Actinomycetes are remarkable natural sources of active natural molecules and enzymes of considerable industrial value. Streptomyces mobaraensis is the first microorganism found to produce transglutaminase with broad industrial applications. Although transglutaminase in S. mobaraensis has been well studied over the past three decades, the genome of S. mobaraensis and its secondary metabolic potential were poorly reported. Here, we presented the complete genome of S. mobaraensis DSM40587 obtained from the German Collection of Microorganisms and Cell Cultures GmbH. It contains a linear chromosome of 7,633,041 bp and a circular plasmid of 23,857 bp. The chromosome with an average GC content of 73.49% was predicted to harbour 6683 protein-coding genes, seven rRNA and 69 tRNA genes. Comparative genomic analysis reveals its meaningful genomic characterisation. A comprehensive bioinformatics investigation identifies 35 putative BGCs (biosynthesis gene clusters) involved in synthesising various secondary metabolites. Of these, 13 clusters showed high similarity (> 55%) to known BGCs coding for polyketides, nonribosomal peptides, hopene, RiPP (Ribosomally synthesized and post-translationally modified peptides), and others. Furthermore, these BGCs with over 65% similarity to the known BGCs were analysed in detail. The complete genome of S. mobaraensis DSM40587 reveals its capacity to yield diverse bioactive natural products and provides additional insights into discovering novel secondary metabolites.
RESUMO
Six ionone glycosides (1-3 and 5-7), including three new ones, named capitsesqsides A-C (1-3), together with an eudesmane sesquiterpenoid glycoside (4) and three known triterpenoid saponins (8-10) were isolated from Rhododendron capitatum. The structures of these compounds were determined by extensive spectroscopic techniques (MS, UV, 1D-NMR, and 2D-NMR) and comparison with data reported in the literature. The absolute configurations were determined by comparison of the experimental and theoretically calculated ECD curves and LC-MS analyses after acid hydrolysis and derivatization. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. Molecular docking demonstrated that 2 has a favorable affinity for NLRP3 and iNOS.
Assuntos
Glicosídeos , Rhododendron , Rhododendron/química , Camundongos , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Células RAW 264.7 , Animais , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Norisoprenoides/química , Norisoprenoides/farmacologia , Norisoprenoides/isolamento & purificação , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
A series of novel trienomycin A (TA)-mimetic compounds (5a-p) have been designed, synthesized, and evaluated for their in vitro anti-neuroinflammatory and neuroprotective activities. Among them, compounds 5h, 5n, and 5o exhibits relatively strong NO inhibitory activity in LPS-activated BV-2 cells with the EC50 values of 12.4, 17.3, and 8.9 µM, respectively. Moreover, 5h showed evidently neuroprotective effect against H2O2-induced PC-12 cells without cytotoxicity at 20 µM. Overall, these compounds can provide a better understanding of the structure-activity relationship of TA and furnish research ideas for anti-neuroinflammatory and neuroprotective agents.
Assuntos
Peróxido de Hidrogênio , Fármacos Neuroprotetores , Ratos , Animais , Peróxido de Hidrogênio/farmacologia , Relação Estrutura-Atividade , Células PC12 , Alanina , Fármacos Neuroprotetores/farmacologiaRESUMO
Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the ß- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 µM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.
Assuntos
Hypericum , Hypericum/química , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Lactonas/farmacologia , Lactonas/química , Transdução de Sinais , Estrutura Molecular , Óxido NítricoRESUMO
Nine new sesquiterpenes, hyperhubeins A-I (1-9), and 14 known analogues (10-23) were isolated from the aerial portions of Hypericum hubeiense. Their structures and absolute configurations were determined unambiguously via spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Compounds 1-3 possess an unprecedented sesquiterpene carbon skeleton. Further, a plausible biosynthetic pathway from farnesyl diphosphate (FPP) is proposed. The isolated phytochemicals were evaluated for neuroprotective and anti-neuroinflammatory properties in vitro. Compounds 1, 2, 5-8, 14, and 21 displayed notable neuroprotective activity against hydrogen peroxide (H2O2)-induced lesions in PC-12 cells at 10 µM. Additionally, compounds 1, 2, 12, and 13 exhibited inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cells, with their IC50 values ranging from 4.92 to 6.81 µM. Possible interactions between these bioactive compounds and inducible nitric oxide synthase (iNOS) were predicted via molecular docking. Moreover, Western blotting indicated that compound 12 exerted anti-neuroinflammatory activity by suppressing LPS-stimulated expression of toll-like receptor-4 (TLR-4) and inhibiting consequent activation of nuclear factor-kappa-B (NF-κB) signaling.
Assuntos
Hypericum , Sesquiterpenos , Anti-Inflamatórios/química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Microglia/metabolismo , Dicroísmo Circular , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
Tricrilactones A-H (1-8), a new family of oligomeric 10-membered macrolides featuring collectively five unique ring skeletons, were isolated from a hitherto unexplored fungus, Trichocladium crispatum. Compounds 1 and 7 contain two unconventional bridged (aza)tricyclic core skeletons, 2, 3, 5, and 6 share an undescribed tetracyclic 9/5/6/6 ring system, 4 bears an uncommon 9/5/6/10/3-fused pentacyclic architecture, and 8 is a dimer bridged by an unexpected C-C linkage. Their structures, including absolute configurations, were elucidated by spectroscopic analysis, quantum chemical calculations, and X-ray diffraction analysis. Importantly, the absolute configuration of the highly flexible side chain of 1 was resolved by the asymmetric synthesis of its four stereoisomers. The intermediate-trapping and isotope labeling experiments facilitated the proposal of the biosynthetic pathway for these macrolides. In addition, their antiosteoporosis effects were evaluated in vivo (zebrafish).
Assuntos
Chaetomium , Macrolídeos , Animais , Estrutura Molecular , Macrolídeos/química , Peixe-Zebra , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Inonotus obliquus is an important edible and medicinal mushroom that was shown to have many pharmacological activities in preclinical trials, including anti-inflammatory, antitumor, immunomodulatory, and antioxidant effects. However, the biosynthesis of these pharmacological components has rarely been reported. The lack of genomic information has hindered further molecular characterization of this mushroom. RESULTS: In this study, we report the genome of I. obliquus using a combined high-throughput Illumina NovaSeq with Oxford Nanopore PromethION sequencing platform. The de novo assembled 38.18 Mb I. obliquus genome was determined to harbor 12,525 predicted protein-coding genes, with 81.83% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed the close evolutionary relationship of I. obliquus with Fomitiporia mediterranea and Sanghuangporus baumii in the Hymenochaetales clade. According to the distribution of reproduction-related genes, we predict that this mushroom possesses a tetrapolar heterothallic reproductive system. The I. obliquus genome was found to encode a repertoire of enzymes involved in carbohydrate metabolism, along with 135 cytochrome P450 proteins. The genome annotation revealed genes encoding key enzymes responsible for secondary metabolite biosynthesis, such as polysaccharides, polyketides, and terpenoids. Among them, we found four polyketide synthases and 20 sesquiterpenoid synthases belonging to four more types of cyclization mechanism, as well as 13 putative biosynthesis gene clusters involved in terpenoid synthesis in I. obliquus. CONCLUSIONS: To the best of our knowledge, this is the first reported genome of I. obliquus; we discussed its genome characteristics and functional annotations in detail and predicted secondary metabolic biosynthesis-related genes, which provides genomic information for future studies on its associated molecular mechanism.
Assuntos
Agaricales , Inonotus , Agaricales/genética , Genômica , FilogeniaRESUMO
The biosynthesis of blasticidin S has drawn attention due to the participation of the radical S-adenosyl methionine (SAM) enzyme BlsE. The original assignment of BlsE as a radical-mediated, redox-neutral decarboxylase is unusual because this reaction appears to serve no biosynthetic purpose and would need to be reversed by a subsequent carboxylation step. Furthermore, with the exception of BlsE, all other radical SAM decarboxylases reported to date are oxidative in nature. Careful analysis of the BlsE reaction, however, demonstrates that BlsE is not a decarboxylase but instead a lyase that catalyzes the dehydration of cytosylglucuronic acid (CGA) to form cytosyl-4'-keto-3'-deoxy-d-glucuronic acid, which can rapidly decarboxylate nonenzymatically in vitro. Analysis of substrate isotopologs, fluorinated analogues, as well as computational models based on X-ray crystal structures of the BlsE·SAM (2.09 Å) and BlsE·SAM·CGA (2.62 Å) complexes suggests that BlsE catalysis likely proceeds via direct elimination of water from the CGA C4' α-hydroxyalkyl radical as opposed to 1,2-migration of the C3'-hydroxyl prior to dehydration. Biosynthetic and mechanistic implications of the revised assignment of BlsE are discussed.
Assuntos
Desidratação , S-Adenosilmetionina , Adenosilmetionina Descarboxilase , Humanos , Nucleosídeos , S-Adenosilmetionina/químicaRESUMO
Covering: up to December 2021Picrotoxane sesquiterpenoids are a special category of natural products known to have a picrotoxane skeleton and are characterised by a highly oxidised cis-hydrindene core, lactone rings, and epoxide functionalities. Ever since the first picrotoxane was isolated from Menispermum cocculus in the early 19th century, these compounds have long attracted the attention of natural product chemists, synthetic chemists, and pharmacologists for their particular structures and powerful biological activities. This review extensively summarizes a total of 132 naturally occurring picrotoxane sesquiterpenoids, taking into account their distributions, structural classifications, chemical and bio-synthetic researches, and bioactivities. It provides a comprehensive and in-depth perspective for further investigation on picrotoxane sesquiterpenoids.
Assuntos
Produtos Biológicos , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , LactonasRESUMO
BACKGROUND: Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. RESULTS: We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an L-tryptophan-L-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from L-tryptophan and L-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. CONCLUSIONS: In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides.
Assuntos
Aspergillus oryzae , Alanina/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Dipeptídeos/metabolismo , Triptofano/metabolismoRESUMO
Thirteen new sesquiterpenoid glycoside esters, including 11 aromadendrane-type compounds, pitqinlingosides A-K (1-11), one cadinane-type compound, pitqinlingoside L (12), and one eudesmane-type compound, pitqinlingoside M (13), together with seven known analogues (14-20) were isolated from the twigs, fruits, and leaves of Pittosporum qinlingense. Structures were elucidated by analysis of spectroscopic data, gas chromatography mass spectrometry (GC-MS), and chemical methods. The absolute configuration was confirmed by single-crystal X-ray crystallography analysis or electronic circular dichroism spectra. Unusual glycoside esters are characterized by the presence of polyacylated ß-d-fucopyranosyl, ß-d-glucopyranosyl, and ß-d-xylopyranosyl units. Pitqinlingosides A (1), B (2), D (4), and F (6), pittosporanoside A1 acetate (14), and pittosporanoside A1 (16) showed significant nitric oxide production inhibition in lipopolysaccharide (LPS)-induced BV-2 microglial cells with IC50 values ranging from 0.95 to 24.12 µM. Structure-activity relationships of the isolated compounds are discussed.
Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , Rosales/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Cristalografia por Raios X , Ésteres/química , Glucosídeos/química , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Estrutura Molecular , Óxido Nítrico/biossíntese , Análise Espectral/métodos , Relação Estrutura-AtividadeRESUMO
Neuroinflammation plays a key etiological role in the progressive neuronal damage of neurodegenerative diseases. Our phenotypic-based screening discovered 1,6-O,O-diacetylbritannilactone (OABL, 1) from Inula britannica exhibited the potential anti-neuroinflammatory activity as well as a favorable blood-brain barrier penetration. 1 and its active derivative Br-OABL (2) with insert of Br at the C-14 position both modulated TLR4/NF-kB/MAPK pathways. However, proteome-wide identification of 1 binding proteins remains unclear. Here, we employed an adapted isoTOP-ABPP, quantitative thiol reactivity profiling (QTRP) approach, to identify and quantify thiol reactivity binding proteins in murine microglia BV-2 cells. We screened out 15 proteins co-targeted by 1 and 2, which are involved in cellular response to oxidative stress and negative regulation NF-κB transcription factor in biological processes. In site-specific profiling, NLRP3 was identified as a covalent target of 1 and 2 for the first time, and the Cys483 of NLRP3 NACHT domain was identified as one active-site of NLRP3 cysteine residues that can be covalently modified by the α-methylene-γ-lactone moiety. Furthermore, NLRP3 was validated to be directly binded by 1 and 2 by cellular thermo shift assay (CETSA) and activity-based protein profiling (ABPP), and NLRP3 functions were also verified by small interfering RNA approach. Notably, OABL treatment (i.p., 20 mg/kg/day) for 21 days reduced inflammation in 5XFAD mice brain. Together, we applied the QTRP to uncover the binding proteins of OABL in BV-2 cells, among which NLRP3 was revealed as a new covalent target of 1 and 2 against neuroinflammation.
Assuntos
Inflamação/tratamento farmacológico , Lactonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , Inula/química , Lactonas/química , Camundongos , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/análise , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sesquiterpenos/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/análiseRESUMO
Emerging evidence suggests the regulation of microglial phenotype balance between M1 and M2 will be a potential therapeutic strategy for microglia-mediated neuroinflammation in Alzheimer's disease (AD). Herein, we evaluated the anti-neuroinflammatory effects and the underlying mechanism of a natural cyathane diterpenoid sarcodonin A (1) derived from the mushroom Sarcodon scabrosus and its six new derivatives (2-7). Lipopolysaccharide (LPS)-activated primary microglia and microglia cell lines were used as models. The nitrite test and immunostaining showed that the derivative named 6 was more effective in inhibiting neuroinflammation. qRT-PCR, ELISA, and western blotting revealed that 6 showed more significant suppression on mRNA and protein expression of proinflammatory M1 markers of TNF-α, IL-6, IL-1ß, iNOS, and COX-2, while more obvious potentiation on mRNA and protein levels of anti-inflammatory M2 markers of IL-10 and ARG-1. In mechanism, western blotting demonstrated that 6 inhibited LPS-induced activation of MAPK, and prevented LPS-stimulated nuclear translocation of NF-κB p65. Molecular docking revealed that 1 and 6 constructed interactions with iNOS. Collectively, the present study indicated that 1 and 6 might support neuroprotection by reversing LPS-induced microglia M1 polarization, implying that sarcodonin A can be a promising candidate for developing new therapeutics against AD by targeting microglia-mediated neuroinflammation.
Assuntos
Microglia , NF-kappa B , Basidiomycota , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , TerpenosRESUMO
Ganoderma resinaceum, as a traditional edible mushroom, has been widely reported to improve neurodegenerative diseases characterized by oxidative stress and inflammation. In this study, five new terpenoids, including four lanostane triterpenoids, named ganoresinoid A-D (1-4) and one meroterpenoid, named ganoresinoid E (5), along with 27 known compounds (6-32), were isolated from the fruiting bodies of edible mushroom G. resinaceum. These structures were identified by NMR, HRESIMS data analysis. All metabolites were evaluated for anti-inflammatory, antioxidative and anti-apoptosis activities. Among them, ganoresinoid A showed notably restrained nitric oxide (NO), IL-1ß, IL-6 and TNF-α levels in LPS-activated BV-2 microglial cells via suppressing TLR-4/ NF-κB and MAPK signaling pathway. Simultaneously, ganoresinoid A remarkably alleviated LPS-induced apoptosis by means of the decrease of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). In addition, ganoresinoid A demonstrated antioxidant effects in H2O2-induced SH-SY5Y cells by activating the Akt/GSK-3ß/Nrf2 signaling pathway. Taken together, these results may provide a stronger theoretical basis for ganoresinoid A from G. resinaceum as nutrition intervention to alleviate neurodegenerative diseases.
Assuntos
Triterpenos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ganoderma , Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio , Lipopolissacarídeos/farmacologia , Triterpenos/química , Triterpenos/farmacologiaRESUMO
Laetiporus species are brown rot fungi belonging to the order Polyporales in the division Basidiomycota. These species produce a variety of metabolites and provide a great source of natural material for the screening of medicinally active natural products or their derivatives. This review summarizes the research progress on bioactive metabolites of Laetiporus species up to April 2022, including biological macromolecules, for instance, polysaccharides and lectins, as well as 80 reported small molecule chemical components (15 sterols, 29 triterpenes, 10 sesquiterpenes, 5 polyenes, 10 volatile compounds, and 11 other compounds). These metabolites exhibit antimicrobial, anticancer, antioxidant, hepatoprotective, anti-inflammatory, and antidiabetic activities. Genome mining predicted 23 terpene synthases, 7 polyketide synthases, and 9 non-ribosomal peptide synthases involved in bioactive metabolites biosynthesis, which were analyzed by antiSMASH in L. sulphureus genome. This review will provide a basis for the biosynthesis of active components in Laetiporus species and a reference for the research of medical precursors. KEY POINTS: ⢠The mini-review summarized 80 secondary metabolites of Laetiporus spp. ⢠The main pharmacological activities of Laetiporus spp. were summarized. ⢠Biosynthetic genes of terpenoids, polyketides, and non-ribosomal peptides were also summarized.
Assuntos
Basidiomycota , Produtos Biológicos , Policetídeos , Polyporales , Basidiomycota/genética , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Policetídeo Sintases , Polyporales/genéticaRESUMO
A series of novel pyrazole-benzimidazole derivatives (6-42) have been designed, synthesized and evaluated for their in vitro antiproliferative activity against the HCT116, MCF-7 and Huh-7 cell lines. Among them, compounds 17, 26 and 35 showed significant antiproliferative activity against HCT116 cell lines with the IC50 values of 4.33, 5.15 and 4.84 µM, respectively. Moreover, fluorescent staining studies showed compound 17 could induce cancer cells apoptosis. The flow cytometry assay revealed that compound 17 could induce cell cycle arrest at G0/G1 phase. All in all, these consequences suggest that pyrazole-benzimidazole derivatives could serve as promising compounds for further research to develop novel and highly potent cancer therapy agents.
Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Desenho de Fármacos , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirazóis/química , Relação Estrutura-AtividadeRESUMO
Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.