Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830208

RESUMO

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.


Assuntos
Compostos Alílicos/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/microbiologia , Dissulfetos/farmacologia , Fungicidas Industriais/farmacologia , Alho/química , Peronospora/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Transcriptoma/efeitos dos fármacos
2.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751960

RESUMO

The number of cloves in a garlic bulb is controlled by axillary meristem differentiation, which directly determines the propagation efficiency. Our previous study showed that injecting garlic plants with gibberellins (GA3) solution significantly increased clove number per bulb. However, the physiological and molecular mechanism of GA-induced axillary bud formation is still unknown. Herein, dynamic changes in histology, phytohormones, sugars and related genes expression at 2, 4, 8, 16 and 32 days after treatment (DAT) were investigated. Histological results indicated two stages (axillary meristem initiation and dormancy) were in the period of 0-30 days after GA3 treatment. Application of GA3 caused a significant increase of GA3 and GA4, and the downregulation of AsGA20ox expression. Furthermore, the change trends in zeatin riboside (ZR) and soluble sugar were the same, in which a high level of ZR at 2 DAT and high content of soluble sugar, glucose and fructose at 4 DAT were recorded, and a low level of ZR and soluble sugar arose at 16 and 32 DAT. Overall, injection of GA3 firstly caused the downregulation of AsGA20ox, a significant increase in the level of ZR and abscisic acid (ABA), and the upregulation of AsCYP735 and AsAHK to activate axillary meristem initiation. Low level of ZR and soluble sugar and a high level of sucrose maintained axillary meristem dormancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA