Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Opt Express ; 32(7): 12569-12586, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571076

RESUMO

According to the principle of synthetic aperture ladar, high-resolution imaging can be achieved if the relative motion exists between the target and the ladar. The imaging system has characteristics including a large field of view, narrow-band laser signals applied, and easy engineering implementation. The complex image reconstruction and the synthetic aperture laser imaging method for moving targets based on the spatial light modulator and the direct-detection detector array are proposed. The far-field simulations and the near-field experiments for the stop-and-go target and the continuous-moving target were carried out. It is verified that the complex image reconstruction method can equivalently realize coherent detection for the target and reflect its phase information corresponding to the laser wavelength. Multi-frame complex images reconstructed can be applied to the synthetic aperture laser imaging, which forms high-resolution images for moving targets under far/near-field conditions.

2.
Appl Opt ; 62(11): 2845-2854, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133127

RESUMO

Inverse synthetic aperture ladar (ISAL) has the capability to achieve high-resolution imaging of long-distance targets in a short time because of the laser's short wavelength. However, the unexpected phases introduced by target vibration in the echo can cause defocused imaging results of the ISAL. How to estimate the vibration phases has always been one of the difficulties in ISAL imaging. In this paper, in view of the echo's low signal-to-noise ratio, the orthogonal interferometry method based on time-frequency analysis is proposed to estimate and compensate the vibration phases of ISAL. The method can effectively suppress the influence of noise on the interferometric phases and accurately estimate vibration phases using multichannel interferometry in the inner view field. The effectiveness of the proposed method is validated through simulations and experiments, including a 1200 m distance cooperative vehicle experiment and a 250 m distance noncooperative unmanned aerial vehicle experiment.

3.
J Mol Cell Cardiol ; 168: 70-82, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489387

RESUMO

Atrial fibrillation (AF) is a major complication of type 2 diabetes mellitus (T2DM) and plays critical roles in the pathogenesis of atrial remodeling. However, the differentially expressed genes in atria during the development of AF induced by hyperglycemia have rarely been reported. Here, we showed time-dependent increased AF incidence and duration, atrial enlargement, inflammation, fibrosis, conduction time and action potential duration in db/db mice, a model of T2DM. RNA sequencing analysis showed that 2256 genes were differentially expressed in the atria at 12, 14 and 16 weeks. Gene Ontology analysis showed that these genes participate primarily in cell adhesion, cellular response to interferon-beta, immune system process, positive regulation of cell migration, ion transport and cellular response to interferon-gamma. Analysis of significant pathways revealed the IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway, chemokine signaling pathway, and cAMP receptor signaling. Additionally, these differentially expressed genes were classified into 50 profiles by hierarchical clustering analysis. Twelve of these profiles were significant and comprised 1115 genes. Gene coexpression network analysis identified that mitogen-activated protein kinase 10 (MAPK10) was localized in the core of the gene network and was the most highly expressed gene at different time points. Knockdown of MAPK10 markedly attenuated DM-induced AF incidence, atrial inflammation, fibrosis, electrical disorder and apoptosis in db/db mice. In summary, the present findings revealed that many genes are involved in DM-induced AF and that MAPK10 plays a central role in this disease, indicating that strategies targeting MAPK10 may represent a potential therapeutic approach to treat DM-induced AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Diabetes Mellitus Tipo 2 , Proteína Quinase 10 Ativada por Mitógeno , Animais , Fibrilação Atrial/enzimologia , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fibrose , Átrios do Coração/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , RNA-Seq , Fatores de Tempo
4.
Lab Invest ; 102(11): 1192-1202, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941186

RESUMO

Recent studies have demonstrated that hyperglycemia is a major risk factor for the development and exacerbation of cardiovascular disease (CVD). However, the molecular mechanisms involved in diabetic cardiomyopathy (DCM) have not been fully elucidated. In this study, we focused on the underlying mechanism of DCM. Leptin receptor-deficient db/db mice were used to model a type 2 diabetes mellitus (T2DM) model in our study. WT mice and db/db mice received 4-phenylbutyric acid (4-PBA) (25 mg/kg/day) and saline by intraperitoneal injection every other day for 4 weeks. WT and db/db mice were given tail vein injections of 100 µL of rAAV9-Sh-MAPK10 and rAAV9-Sh-GFP at the age of 6-8 weeks. Echocardiography was performed to measure cardiac function, histological examinations were used to evaluate ventricular hypertrophy and fibrosis. Quantitative RT-qPCR was used to assess the mRNA expression of Jun N-terminal kinase 3 (JNK3, MAPK10), atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), and collagen I and III. Immunoblotting was performed to measure the levels of cardiac hypertrophy-related proteins, fibrosis-related proteins, endoplasmic reticulum stress (ERS)-related proteins and apoptosis-related proteins. TUNEL staining was performed to examine cardiomyocyte apoptosis. In contrast to 12-week-old db/db mice, 16-week-old db/db mice showed the most severe myocardial dysfunction. The DCM induced by hyperglycemia was largely alleviated by 4-PBA (25 mg/kg/day, intraperitoneal injection). Similarly, tail vein injection of rAAV9-Sh-MAPK10 reversed the phenotype of the heart in db/db mice including cardiac hypertrophy and apoptosis in db/db mice. The mechanistic findings suggested that hyperglycemia initiated the ERS response through the negative regulation of sirtuin 1 (SIRT1), leading to the occurrence of myocardial dysfunction, and specific knockdown of MAPK10 in the heart directly reversed myocardial dysfunction induced by hyperglycemia. We demonstrated that hyperglycemia promotes DCM in db/db mice through the ERS-MAPK10 signaling pathway in diabetic mice.


Assuntos
Cardiomiopatias , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Fator Natriurético Atrial , Cardiomegalia/etiologia , Cardiomiopatias/metabolismo , Colágeno , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Fibrose , Hiperglicemia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Peptídeo Natriurético Encefálico , Receptores para Leptina/genética , RNA Mensageiro , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo
5.
Opt Lett ; 47(20): 5356-5359, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240361

RESUMO

According to the self-heterodyne signal obtained by lidar under different fiber delay times, the model of the local oscillator signal was established, and the maintenance method of signal coherence in lidar based on the digital delay was improved by using multiple sinusoidal frequency modulation components. An imaging detection experiment was carried out at a distance of 5.4 km. The coherence of the lidar signal was maintained by combining the transmitting reference channel correction method and the local oscillator reference channel compensation method, accompanied by the use of a phase spectrum to analyze the improvement effect. The processing results of the echo signal showed that the method could remove the high-order phase errors that cannot be compensated by the phase gradient autofocus algorithm and improve the signal coherence, which could be used for the detection and imaging of long-range targets.

6.
Appl Opt ; 61(34): 10080-10085, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606767

RESUMO

Aiming at the wide-spectrum chromatic aberration problem of membrane diffractive lenses, the concept of the digital chromatic aberration correction infrared imaging system was proposed. The principle of digital chromatic aberration correction was given, and the chromatic aberration correction of this system was completed on a computer, which is based on a wavelength-tunable laser local oscillator coherent detection detector. Compared with the chromatic aberration correction method for traditional lenses, this membrane diffractive optical system exhibited characteristics of small size, low weight, and low complexity. The digital chromatic aberration correction application conditions of this membrane diffractive optical system were analyzed. In addition, the main parameters and imaging simulation results were given. The center wavelength of this membrane diffractive optical system is 1.55 µm, and its spectral range is 1.50-1.60 µm. The application of autocorrelation processing to infrared complex images after digital chromatic aberration correction followed by incoherent accumulation of the received corrected complex images based on multiple stepping wavelengths could significantly improve the imaging signal-to-noise ratio.

7.
Appl Opt ; 61(18): 5466-5473, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256114

RESUMO

A dual-channel inverse synthetic aperture ladar imaging experimental system based on wide-pulse binary phase coded signals and its moving target imaging are introduced. The analysis, simulation, and experimental data processing results of binary phase coded signal Doppler compensation and pulse compression are included. The method of motion phase error estimation based on interferometric processing and the imaging method with small computation in the case of large squint angles are proposed, and the simulation results are presented. The effectiveness of the imaging method is verified by experimental data processing. Doppler frequency curves are estimated based on time-frequency analysis of echo signals, and the coarse compensation of motion phase error is realized. According to the interferometric phase and coherence coefficient of dual-channel echo signals' time-frequency analysis, the coherence of the dual-channel echo signals is checked, and along-track interferometry can be applied to the precise compensation. The stable interferometric phase and increased coherence coefficient of actual dual-channel data imaging results indicate the effectiveness of the motion phase error compensation method proposed. Considering characteristics of inverse synthetic aperture ladar (ISAL) imaging, after dividing echo signals into multiple sub-apertures, range-Doppler algorithm and sub-aperture stitching are adopted, the stitched image is corrected geometrically through Stolt transformation, and the computation is reduced.

9.
Phys Chem Chem Phys ; 19(21): 13534-13546, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28503684

RESUMO

(Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals with their chemical composition located at the tetragonal antiferroelectric region are grown via the flux method in a PbO-PbF2-B2O3 mixture. Segregation of the Ti4+ component in the as-grown crystals is observed due to the strong affinity between the oxygen anion and Ti4+ ions. The critical electric field of the antiferroelectric to ferroelectric phase transition is determined to be about 0.5 kV mm-1. The electric field induced ferroelectric phase transforms back into the antiferroelectric phase at a depolarization temperature of 125 °C. Anisotropy of the harvested energy density and electrocaloric behaviors are achieved for the [100], [110] and [111]-oriented PLZST crystals. Based on the thermodynamic theory approach, all the abovementioned behaviors originate from the anisotropic total entropy change. Enhanced electrocaloric strength (0.3 K mm kV-1) and the harvested energy density of 0.62 J cm-3 are obtained in the [111]-oriented PLZST crystals. Our results demonstrate the competence of PLZST single crystals for cooling devices and pyroelectric energy harvesting and provide new opportunities to improve energy harvesting density and electrocaloric properties via the anisotropic structural layout, which make the PLZST crystals attractive for solid state cooling devices and energy conversion technologies.

10.
ACS Appl Mater Interfaces ; 16(21): 27705-27713, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748054

RESUMO

Vascular stenting is a common procedure used to treat diseased blood vessels by opening the narrowed vessel lumen and restoring blood flow to ischemic tissues in the heart and other organs. In this work, we report a novel piezoelectric stent featuring a zigzag shape fabricated by fused deposition modeling three-dimensional (3D) printing with a built-in electric field. The piezoelectric composite was made of potassium sodium niobite microparticles and poly(vinylidene fluoride-co-hexafluoropropylene), complementing each other with good piezoelectric performance and mechanical resilience. The in situ poling yielded an appreciable piezoelectricity (d33 ∼ 4.2 pC N-1) of the as-printed stents. In vitro testing revealed that materials are nontoxic to vascular cells and have low thrombotic potential. Under stimulated blood pressure fluctuation, the as-printed piezoelectric stent was able to generate peak-to-peak voltage from 0.07 to 0.15 V corresponding to pressure changes from 20 to 120 Psi, giving a sensitivity of 7.02 × 10-4 V Psi-1. Biocompatible piezoelectric stents bring potential opportunities for the real-time monitoring of blood vessels or enabling therapeutic functions.


Assuntos
Impressão Tridimensional , Stents , Humanos , Eletricidade , Pressão , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polivinil/química
11.
Mater Horiz ; 11(5): 1305-1314, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38169374

RESUMO

Elastomers are widely used in traditional industries and new intelligent fields. However, they are inevitably damaged by electricity, heat, force, etc. during the working process. With the continuous improvement of reliability and environmental protection requirements in human production and living, it is vital to develop elastomer materials with good mechanical properties that are not easily damaged and can self-heal after being damaged. Nevertheless, there are often contradictions between mechanical properties and self-healing as well as toughness, strength, and ductility. Herein, a strong and dynamic decuple hydrogen bonding based on carbon hydrazide (CHZ) is reported, accompanied with soft polydimethylsiloxane (PDMS) chains to prepare self-healing (efficiency 98.7%), recyclable, and robust elastomers (CHZ-PDMS). The strategy of decuple hydrogen bonding will significantly impact the study of the mechanical properties of elastomers. High stretchability (1731%) and a high toughness of 23.31 MJ m-3 are achieved due to the phase-separated structure and energy dissipation. The recyclability of CHZ-PDMS further supports the concept of environmental protection. The application of CHZ-PDMS as a flexible strain sensor exhibited high sensitivity.

12.
Biomed Pharmacother ; 171: 116123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211424

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by dopaminergic neuron death in the substantia nigra, leading to motor dysfunction. Autophagy dysregulation has been implicated in PD pathogenesis. This study explores the role of miR-214-3p in PD, focusing on its impact on autophagy and dopaminergic neuron viability. Using in vitro and in vivo models, we demonstrate that miR-214-3p inhibits autophagy and promotes dopaminergic neuron apoptosis. Behavioral assessments and molecular analyses reveal exacerbation of PD symptoms upon miR-214-3p overexpression. Furthermore, mechanistic investigations identify ATG3 as a target, shedding light on miR-214-3p's regulatory role in autophagy. These findings enhance our understanding of PD pathogenesis and propose miR-214-3p as a potential biomarker and therapeutic target for modulating autophagy and neuronal survival in PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , Substância Negra/patologia , Apoptose , Autofagia , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL
13.
Front Microbiol ; 15: 1397830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784808

RESUMO

The rise of antimicrobial resistance in ESKAPEE pathogens poses significant clinical challenges, especially in polymicrobial infections. Bacteriophage-derived endolysins offer promise in combating this crisis, but face practical hurdles. Our study focuses on engineering endolysins from a Klebsiella pneumoniae phage, fusing them with ApoE23 and COG133 peptides. We assessed the resulting chimeric proteins' bactericidal activity against ESKAPEE pathogens in vitro. ApoE23-Kp84B (CHU-1) reduced over 3 log units of CFU for A. baumannii, E. faecalis, K. pneumoniae within 1 h, while COG133-Kp84B (CHU-2) showed significant efficacy against S. aureus. COG133-L1-Kp84B, with a GS linker insertion in CHU-2, exhibited outstanding bactericidal activity against E. cloacae and P. aeruginosa. Scanning electron microscopy revealed alterations in bacterial morphology after treatment with engineered endolysins. Notably, CHU-1 demonstrated promising anti-biofilm and anti-persister cell activity against A. baumannii and E. faecalis but had limited efficacy in a bacteremia mouse model of their coinfection. Our findings advance the field of endolysin engineering, facilitating the customization of these proteins to target specific bacterial pathogens. This approach holds promise for the development of personalized therapies tailored to combat ESKAPEE infections effectively.

14.
Int J Antimicrob Agents ; 64(2): 107220, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38810939

RESUMO

Phage therapy offers a promising approach to combat the growing threat of antimicrobial resistance. Yet, key questions remain regarding dosage, administration routes, combination therapy, and the causes of therapeutic failure. In this study, we focused on a novel lytic phage, ФAb4B, which specifically targeted the Acinetobacter baumannii strains with KL160 capsular polysaccharide, including the pan-drug resistant A. baumannii YQ4. ФAb4B exhibited the ability to effectively inhibit biofilm formation and eradicate mature biofilms independently of dosage. Additionally, it demonstrated a wide spectrum of antibiotic-phage synergy and did not show any cytotoxic or haemolytic effects. Continuous phage injections, both intraperitoneally and intravenously over 7 d, showed no acute toxicity in vivo. Importantly, phage therapy significantly improved neutrophil counts, outperforming ciprofloxacin. However, excessive phage injections suppressed neutrophil levels. The combinatorial treatment of phage-ciprofloxacin rescued 91% of the mice, a superior outcome compared to phage alone (67%). The efficacy of the combinatorial treatment was independent of phage dosage. Notably, prophylactic administration of the combinatorial regimen provided no protection, but even when combined with a delayed therapeutic regimen, it saved all the mice. Bacterial resistance to the phage was not a contributing factor to treatment failure. Our preclinical study systematically describes the lytic phage's effectiveness in both in vitro and in vivo settings, filling in crucial details about phage treatment against bacteriemia caused by A. baumannii, which will provide a robust foundation for the future of phage therapy.

15.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15275-15291, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751343

RESUMO

Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focus respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.

16.
J Cachexia Sarcopenia Muscle ; 14(3): 1365-1380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905132

RESUMO

BACKGROUND: Skeletal muscle dysfunction is an important co-morbidity in patients with chronic obstructive pulmonary disease (COPD) and is significantly associated with increased mortality. Oxidative stress has been demonstrated an important trigger for COPD-related skeletal muscle dysfunction. Glycine-histidine-lysine (GHK) is an active tripeptide, which is a normal component of human plasma, saliva, and urine; promotes tissue regeneration; and acts as an anti-inflammatory and antioxidant properties. The purpose of this study was to determine whether GHK is involved in COPD-related skeletal muscle dysfunction. METHODS: The plasma GHK level in patients with COPD (n = 9) and age-paired healthy subjects (n = 11) were detected using reversed-phase high-performance liquid chromatography. The complex GHK with Cu (GHK-Cu) was used in in vitro (C2C12 myotubes) and in vivo experiments (cigarette smoking [CS]-exposure mouse model) to explore the involvement of GHK in CS-induced skeletal muscle dysfunction. RESULTS: Compared with healthy control, plasma GHK levels were decreased in patients with COPD (70.27 ± 38.87 ng/mL vs. 133.0 ± 54.54 ng/mL, P = 0.009). And plasma GHK levels in patients with COPD were associated with pectoralis muscle area (R = 0.684, P = 0.042), inflammatory factor TNF-α (R = -0.696, P = 0.037), and antioxidative stress factor SOD2 (R = 0.721, P = 0.029). GHK-Cu was found to rescue CSE-induced skeletal muscle dysfunction in C2C12 myotubes, as evidenced by increased expression of myosin heavy chain, reduced expression of MuRF1 and atrogin-1, elevated mitochondrial content, and enhanced resistance to oxidative stress. In CS-induced muscle dysfunction C57BL/6 mice, GHK-Cu treatment (0.2 and 2 mg/kg) reduces CS-induced muscle mass loss (skeletal muscle weight (1.19 ± 0.09% vs. 1.29 ± 0.06%, 1.40 ± 0.05%; P < 0.05) and muscle cross-sectional area elevated (1055 ± 552.4 µm2 vs. 1797 ± 620.9 µm2 , 2252 ± 534.0 µm2 ; P < 0.001), and also rescues CS-induced muscle weakness, indicated by improved grip strength (175.5 ± 36.15 g vs. 257.6 ± 37.98 g, 339.1 ± 72.22 g; P < 0.01). Mechanistically, GHK-Cu directly binds and activates SIRT1(the binding energy was -6.1 kcal/mol). Through activating SIRT1 deacetylation, GHK-Cu inhibits FoxO3a transcriptional activity to reduce protein degradation, deacetylates Nrf2 and contribute to its action of reducing oxidative stress by generation of anti-oxidant enzymes, increases PGC-1α expression to promote mitochondrial function. Finally, GHK-Cu could protect mice against CS-induced skeletal muscle dysfunction via SIRT1. CONCLUSIONS: Plasma glycyl-l-histidyl-l-lysine level in patients with chronic obstructive pulmonary disease was significantly decreased and was significantly associated with skeletal muscle mass. Exogenous administration of glycyl-l-histidyl-l-lysine-Cu2+ could protect against cigarette smoking-induced skeletal muscle dysfunction via sirtuin 1.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Lisina/metabolismo , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
17.
Int J Biol Macromol ; 253(Pt 4): 126892, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709231

RESUMO

CC chemokine receptor-3 (hCCR3), a G protein-coupled receptor (GPCR) expressed predominantly on eosinophils, is an important drug target. However, it was unclear how chemokine ligands, activators and antagonists recognize hCCR3, and quantitative measurements of hCCR3 inhibition or activation were rare. This study constructed a nanogold receptor sensor using hCCR3 as the molecular recognition element and horseradish peroxidase as the signal amplifier. We quantified the kinetic antagonism between chemokines and hCCR3 before and after adding hCCR3 antagonists. A molecular docking study was carried out to investigate how hCCR3 and its ligands work. The study results indicate chemokines interact with hCCR3 at low concentrations, and reversible hCCR3 inhibitors solely inhibit hCCR3, not CCLs. Moreover, a quantitative evaluation of hCCR3 chemokine activators and their antagonists was carried out using a directed weighted network. This offers a novel approach to quantitatively evaluate chemokine-receptor activation and antagonism together. This research could potentially offer new insights into the mechanisms of action of chemokines and drug screening.


Assuntos
Quimiocinas , Regulação Alostérica , Simulação de Acoplamento Molecular
18.
Genome Med ; 15(1): 93, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936230

RESUMO

BACKGROUND: Early detection of hepatocellular carcinoma (HCC) is important in order to improve patient prognosis and survival rate. Methylation sequencing combined with neural networks to identify cell-free DNA (cfDNA) carrying aberrant methylation offers an appealing and non-invasive approach for HCC detection. However, some limitations exist in traditional methylation detection technologies and models, which may impede their performance in the read-level detection of HCC. METHODS: We developed a low DNA damage and high-fidelity methylation detection method called No End-repair Enzymatic Methyl-seq (NEEM-seq). We further developed a read-level neural detection model called DeepTrace that can better identify HCC-derived sequencing reads through a pre-trained and fine-tuned neural network. After pre-training on 11 million reads from NEEM-seq, DeepTrace was fine-tuned using 1.2 million HCC-derived reads from tumor tissue DNA after noise reduction, and 2.7 million non-tumor reads from non-tumor cfDNA. We validated the model using data from 130 individuals with cfDNA whole-genome NEEM-seq at around 1.6X depth. RESULTS: NEEM-seq overcomes the drawbacks of traditional enzymatic methylation sequencing methods by avoiding the introduction of unmethylation errors in cfDNA. DeepTrace outperformed other models in identifying HCC-derived reads and detecting HCC individuals. Based on the whole-genome NEEM-seq data of cfDNA, our model showed high accuracy of 96.2%, sensitivity of 93.6%, and specificity of 98.5% in the validation cohort consisting of 62 HCC patients, 48 liver disease patients, and 20 healthy individuals. In the early stage of HCC (BCLC 0/A and TNM I), the sensitivity of DeepTrace was 89.6 and 89.5% respectively, outperforming Alpha Fetoprotein (AFP) which showed much lower sensitivity in both BCLC 0/A (50.5%) and TNM I (44.7%). CONCLUSIONS: By combining high-fidelity methylation data from NEEM-seq with the DeepTrace model, our method has great potential for HCC early detection with high sensitivity and specificity, making it potentially suitable for clinical applications. DeepTrace: https://github.com/Bamrock/DeepTrace.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , DNA de Neoplasias , Metilação de DNA , Redes Neurais de Computação
19.
Front Cardiovasc Med ; 9: 1011429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337862

RESUMO

Some studies have shown that sodium-glucose cotransporter (SGLT) 2 inhibitors can definitively attenuate the occurrence of cardiovascular diseases such as heart failure (HF), dilated cardiomyopathy (DCM), and myocardial infarction. With the development of research, SGLT2 inhibitors can also reduce the risk of arrhythmias. So in this review, how SGLT2 inhibitors play a role in reducing the risk of arrhythmia from the perspective of electrical remodeling and structural remodeling are explored and then the possible mechanisms are discussed. Specifically, we focus on the role of SGLT2 inhibitors in Na+ and Ca2 + homeostasis and the transients of Na+ and Ca2 +, which could affect electrical remodeling and then lead to arrythmia. We also discuss the protective role of SGLT2 inhibitors in structural remodeling from the perspective of fibrosis, inflammation, oxidative stress, and apoptosis. Ultimately, it is clear that SGLT2 inhibitors have significant benefits on cardiovascular diseases such as HF, myocardial hypertrophy and myocardial infarction. It can be expected that SGLT2 inhibitors can reduce the risk of arrhythmia.

20.
Front Nutr ; 9: 921399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903456

RESUMO

Background: Sarcopenia is common in patients with chronic obstructive pulmonary disease (COPD) and is mainly caused by systemic inflammation. Resistin acts as a proinflammatory cytokine and is involved in the activation of multiple inflammatory signaling pathways. The aim of this study was to determine the relationship between resistin levels and systemic inflammation and to assess the clinical value of circulating resistin for sarcopenia in patients with COPD. Methods: In this prospective observational study, we enrolled 235 patients with COPD who were divided into development and validation sets. The definition of sarcopenia followed the guidelines from the Asian Working Group for Sarcopenia. Serum concentrations of resistin and TNF-α were measured using an enzyme-linked immunosorbent assay (ELISA). Results: In this study, higher serum resistin levels were significantly associated with lower skeletal muscle mass and muscular strength. The serum resistin levels in patients with sarcopenia were significantly higher than those in patients without sarcopenia. The serum resistin level had positive correlations with the serum TNF-α level (r = 0.250, p = 0.007). The predictive efficacy of the serum resistin level (AUC: 0.828) for sarcopenia was superior to that of the serum TNF-α level (AUC: 0.621). The cutoff point (7.138 ng/ml) for the serum resistin level was validated in the validation set (AUC: 0.818). Conclusions: Serum resistin levels were associated with systemic inflammation and can be used accurately and easily to predict sarcopenia in patients with COPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA