Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630256

RESUMO

CeO2 is an important rare earth (RE) oxide and has served as a typical oxygen storage material in practical applications. In the present study, the oxygen storage capacity (OSC) of CeO2 was enhanced by doping with other rare earth ions (RE, RE = Yb, Y, Sm and La). A series of Undoped and RE-doped CeO2 with different doping levels were synthesized using a solvothermal method following a subsequent calcination process, in which just Ce(NO3)3∙6H2O, RE(NO3)3∙nH2O, ethylene glycol and water were used as raw materials. Surprisingly, the Undoped CeO2 was proved to be a porous material with a multilayered special morphology without any additional templates in this work. The lattice parameters of CeO2 were refined by the least-squares method with highly pure NaCl as the internal standard for peak position calibrations, and the solubility limits of RE ions into CeO2 were determined; the amounts of reducible-reoxidizable Cen+ ions were estimated by fitting the Ce 3d core-levels XPS spectra; the non-stoichiometric oxygen vacancy (VO) defects of CeO2 were analyzed qualitatively and quantitatively by O 1s XPS fitting and Raman scattering; and the OSC was quantified by the amount of H2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2-TPR) measurements. The maximum [OSC] of CeO2 appeared at 5 mol.% Yb-, 4 mol.% Y-, 4 mol.% Sm- and 7 mol.% La-doping with the values of 0.444, 0.387, 0.352 and 0.380 mmol H2/g by an increase of 93.04, 68.26, 53.04 and 65.22%. Moreover, the dominant factor for promoting the OSC of RE-doped CeO2 was analyzed.

2.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793262

RESUMO

This study reported a multi-functional Co0.45Fe0.45Ni0.9-MOF/NF catalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting, which was synthesized via a novel shape-preserving two-step hydrothermal method. The resulting bowknot flake structure on NF enhanced the exposure of active sites, fostering a superior electrocatalytic surface, and the synergistic effect between Co, Fe, and Ni enhanced the catalytic activity of the active site. In an alkaline environment, the catalyst exhibited impressive overpotentials of 244 mV and 287 mV at current densities of 50 mA cm-2 and 100 mA cm-2, respectively. Transitioning to a neutral environment, an overpotential of 505 mV at a current density of 10 mA cm-2 was achieved with the same catalyst, showing a superior property compared to similar catalysts. Furthermore, it was demonstrated that Co0.45Fe0.45Ni0.9-MOF/NF shows versatility as a bifunctional catalyst, excelling in both OER and HER, as well as overall water splitting. The innovative shape-preserving synthesis method presented in this study offers a facile method to develop an efficient electrocatalyst for OER under both alkaline and neutral conditions, which makes it a promising catalyst for hydrogen production by water splitting.

3.
Nanomaterials (Basel) ; 14(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921912

RESUMO

Hydrogen energy, known for its high energy density, environmental friendliness, and renewability, stands out as a promising alternative to fossil fuels. However, its broader application is limited by the challenge of efficient and safe storage. In this context, solid-state hydrogen storage using nanomaterials has emerged as a viable solution to the drawbacks of traditional storage methods. This comprehensive review delves into the recent advancements in nanomaterials for solid-state hydrogen storage, elucidating the fundamental principles and mechanisms, highlighting significant material systems, and exploring the strategies of surface and interface engineering alongside catalytic enhancement. We also address the primary challenges and provide future perspectives on the development of nanomaterial-based hydrogen storage technologies. Key discussions include the role of nanomaterial size effects, surface modifications, nanocomposites, and nanocatalysts in optimizing storage performance.

4.
Materials (Basel) ; 16(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570182

RESUMO

A cubic fluorite-type CeO2 with mesoporous multilayered morphology was synthesized by the solvothermal method followed by calcination in air, and its oxygen storage capacity (OSC) was quantified by the amount of O2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2-TPR) measurements. Doping CeO2 with ytterbium (Yb) and nitrogen (N) ions proved to be an effective route to improving its OSC in this work. The OSC of undoped CeO2 was 0.115 mmol O2/g and reached as high as 0.222 mmol O2/g upon the addition of 5 mol.% Yb(NO3)3∙5H2O, further enhanced to 0.274 mmol O2/g with the introduction of 20 mol.% triethanolamine. Both the introductions of Yb cations and N anions into the CeO2 lattice were conducive to the formation of more non-stoichiometric oxygen vacancy (VO) defects and reducible-reoxidizable Cen+ ions. To determine the structure performance relationships, the partial least squares method was employed to construct two linear functions for the doping level vs. lattice parameter and [VO] vs. OSC/SBET.

5.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048943

RESUMO

A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.

6.
Materials (Basel) ; 15(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556775

RESUMO

Doping CeO2 with Y cations was achieved in this study using three strategies: doping only during the hydrothermal process (H-Y-doped CeO2), doping only during the impregnation process (I-Y-doped CeO2), and doping during both the hydrothermal and impregnation processes (H/I-Y-doped CeO2). During the three synthesis strategies of Y-doped CeO2, these Y ions could be incorporated into the CeO2 lattice in the +3 state while holding the cubic fluorite structure, and no impurity phases were detected. Pure CeO2 crystal itself contained a certain number of intrinsic VO defects, and Y-doping was beneficial for the creation of extrinsic VO defects. The relative concentrations of VO defects were quantified by the values of A592/A464 obtained from Raman spectra, which were 1.47, 0.93, and 1.16 for the H-Y-, I-Y-, and H/I-Y-doped CeO2, respectively, and were higher than that of the undoped one (0.67). Moreover, the OSCs of the three Y-doped CeO2 were enhanced, and the sequence of OSCs was: H-Y-doped CeO2 (0.372 mmol/g) > H/I-Y-doped CeO2 (0.353 mmol/g) > I-Y-doped CeO2 (0.248 mmol/g) > Undoped CeO2 (0.153 mmol/g); this result was in good agreement with the Raman spectroscopy results.

7.
J Colloid Interface Sci ; 400: 24-30, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23582903

RESUMO

This paper reports a new design to fabricate broadband antireflective superhydrophobic coatings by versatile dip-coating of three silica-based sols: silica sol (below 10nm) prepared under acidic conditions (sol A), silica nanoparticle (ca. 25 nm) suspension prepared by the Stöber method (sol B) and mesoporous silica nanoparticle (MSN) suspension, followed by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The maximum transmittance of coatings reached as high as 95.3% at the wavelength of 630 nm, whereas the water contact angle was 153° with sliding angle ≤5° by applying of the A2/B/MSN2 coating. The superhydrophobic A/B/MSN2 coating (water contact angle: 153°, sliding angle: ≤5°) showed excellent antireflection in the wavelength range of 400-2000 nm, especially in the wavelength range of 742-1573 nm where the transmittance of glass substrate is significantly lower. Transmission electron microscopy was used to characterize the morphology of synthesized nanoparticles. Scanning electron microscopy and atomic force microscopy were used to observe the morphology and estimate the surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The broadband antireflection of superhydrophobic A/B/MSN2 coating was discussed in detail.

8.
J Colloid Interface Sci ; 396: 152-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23433522

RESUMO

The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA