Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(1): 110762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104669

RESUMO

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Assuntos
Carcinogênese , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinogênese/genética , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patologia
2.
Small ; : e2404231, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943438

RESUMO

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

3.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216883

RESUMO

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Assuntos
Neoplasias Colorretais , Escherichia coli , Camundongos , Animais , Humanos , Escherichia coli/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Guanosina Trifosfato , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
J Ultrasound Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700100

RESUMO

PURPOSE: To evaluate changes in dynamic cerebral autoregulation (CA) during short-term and long-term exposure to high altitude with ultrasonography, and also study the sex differences in the response of CA to altitude. METHODS: We assessed the differences in dynamic CA and measured with Doppler ultrasound of the bilateral internal carotid artery (ICA), vertebral artery (VA), and middle cerebral artery (MCA) and the values of basic information within 48 hours and at 2 years after arrival at Tibet in 65 healthy Han young Chinese volunteers, meanwhile, we compared the resistance index (RI) and pulsatility index (PI) of the right MCA at inhale oxygen 8 minutes when a newcomer with 2 years after arrival at Tibet. RESULTS: With 2 years of altitude exposure, the SaO2 of all subjects was above 90%, the mean PEF, DAP, and HR values decreased, HGB increased compared within 48 hours in same-gender groups. Comparisons of cerebral hemodynamics between before 2 years and after 2 years within male and female groups, the mean RI and PI values of bilateral MCA after 2 years were significantly higher than before 2 years, at the same time, the mean RI and PI values of bilateral ICA were significant differences (P < .05) between male groups, with regard to female groups, showed that the mean RI and PI values of bilateral VA were significant differences (P < .05). Comparisons of Right MCA hemodynamics between after oxygen uptake 8 minutes and 2 years, the mean RI and PI values were no significant difference within male and female groups (P > .05). CONCLUSIONS: Acute mountain sickness could result from an alteration of dynamic autoregulation of cerebral blood flow, but the impaired autoregulation may be corrected with the extension of time, furthermore, the response of CA to altitude in males and females are different.

5.
J Am Chem Soc ; 145(39): 21646-21660, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733759

RESUMO

R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.


Assuntos
Estruturas R-Loop , Precursores de RNA , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , DNA/química , RNA/química , Regiões Promotoras Genéticas
6.
J Am Chem Soc ; 145(49): 27095-27102, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016919

RESUMO

Stable luminescent radicals are open-shell emitters with unique doublet emission characteristics. This feature makes stable luminescent radicals exhibit widespread application prospects in constructing optical, electrical, and magnetic materials. In this work, a stable luminescent radical-based X-ray scintillator of AuPP-1.0 was prepared, which exhibited a high X-ray excited luminescence (XEL) efficiency as well as excellent stability. A mechanism study showed that the heavy atom of Au in AuPP-1.0 endowed it with effective absorption of X-rays, and the doublet emission characteristics of AuPP-1.0 significantly increased its exciton utilization rate in the radioluminescence process. Moreover, AuPP-1.0 has good processability to fabricate a flexible screen for high-quality X-ray imaging, whose resolution can reach 20 LP mm-1. This work demonstrates that the doublet emission is beneficial for improving the exciton utilization rate of radioluminescence, providing a brand-new strategy for the construction of high-performance X-ray scintillators.

7.
Nat Chem Biol ; 17(2): 161-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199912

RESUMO

The DNA guanine quadruplexes (G4) play important roles in multiple cellular processes, including DNA replication, transcription and maintenance of genome stability. Here, we showed that Yin and Yang 1 (YY1) can bind directly to G4 structures. ChIP-seq results revealed that YY1-binding sites overlap extensively with G4 structure loci in chromatin. We also observed that the dimerization of YY1 and its binding with G4 structures contribute to YY1-mediated long-range DNA looping. Displacement of YY1 from G4 structure sites disrupts substantially the YY1-mediated DNA looping. Moreover, treatment with G4-stabilizing ligands modulates the expression of not only those genes with G4 structures in their promoters, but also those associated with distal G4 structures that are brought to close proximity via YY1-mediated DNA looping. Together, we identified YY1 as a DNA G4-binding protein, and revealed that YY1-mediated long-range DNA looping requires its dimerization and occurs, in part, through its recognition of G4 structure.


Assuntos
DNA/química , DNA/genética , Quadruplex G , Expressão Gênica/genética , Fator de Transcrição YY1/genética , Sítios de Ligação , Sistemas CRISPR-Cas , Cromatina/metabolismo , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Dedos de Zinco
8.
Cell Biol Int ; 47(2): 383-393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480792

RESUMO

NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro , Modelos Animais de Doenças , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
9.
Epidemiol Infect ; 151: e174, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675640

RESUMO

Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.


Assuntos
Bartonella , Coinfecção , Leptospira , Animais , Bartonella/genética , China/epidemiologia , Filogenia , Roedores/microbiologia , Musaranhos/microbiologia
10.
Ecotoxicol Environ Saf ; 267: 115631, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890251

RESUMO

Cadmium (Cd) is a highly toxic heavy metal and readily accumulates in tobacco, which imperils public health via Cd exposure from smoking. Beneficial microbes have a pivotal role in promoting plant growth, especially under environmental stresses such as heavy metal stresses. In this study, we introduced a novel fungal strain Trichoderma nigricans T32781, and investigated its capacity to alleviate Cd-induced stress in tobacco plants through comprehensive physiological and omics analyses. Our findings revealed that T32781 inoculation in soil leads to a substantial reduction in Cd-induced growth inhibition. This was evidenced by increased plant height, enhanced biomass accumulation, and improved photosynthesis, as indicated by higher values of key photosynthetic parameters, including the maximum quantum yield of photosystem Ⅱ (Fv/Fm), stomatal conductance (Gs), photosynthetic rate (Pn) and transpiration rate (Tr). Furthermore, element analysis demonstrated that T. nigricans T32781 inoculation resulted in a remarkable reduction of Cd uptake by 62.2% and a 37.8% decrease in available soil Cd compared to Cd-stressed plants without inoculation. The protective role of T32781 extended to mitigating Cd-induced oxidative stress by improving antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Metabolic profiling of tobacco roots identified 43 key metabolites, with notable contributions from compounds like nicotinic acid, succinic acid, and fumaric acid in reducing Cd toxicity in T32781-inoculated plants. Additionally, rhizosphere microbiome analysis highlighted the promotion of beneficial microbes, including Gemmatimonas and Sphingomonas, by T32781 inoculation, which potentially contributed to the restoration of plant growth under Cd exposure. In summary, our study demonstrated that T. nigricans T32781 effectively alleviated Cd stress in tobacco plants by reducing Cd uptake, alleviating Cd-induced oxidative stress, influencing plant metabolite and modulating the microbial composition in the rhizosphere. These findings offer a novel perspective and a promising candidate strain for enhancing Cd tolerance and prohibiting its accumulation in plants to reduce health risks associated with exposure to Cd-contaminated plants.


Assuntos
Nicotiana , Trichoderma , Cádmio/toxicidade , Fumar , Solo
11.
Angew Chem Int Ed Engl ; 62(40): e202308194, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366600

RESUMO

X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal-organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm-1 .

12.
J Am Chem Soc ; 144(31): 14016-14020, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905379

RESUMO

DNA polymerase η (Pol η) catalyzes accurate bypass of ultraviolet light-induced cyclobutane pyrimidine dimers, and it also functions in several other related processes, including bypassing DNA with unusual structures. Here, we performed unbiased proteome-wide profiling of Pol η-interacting proteins by using two independent approaches, i.e., proximity labeling and affinity pull-down followed by LC-MS/MS analysis. We identified several helicases, including DHX9, as novel Pol η-interacting proteins. Additionally, ChIP-Seq analysis showed that Pol η is enriched at guanine quadruplex (G4) structure sites in chromatin. Moreover, Pol η promotes the recruitment of DHX9 to G4 structure loci in chromatin and facilitates DHX9-mediated unwinding of G4 structures. Deficiency in Pol η or DHX9 leads to attenuated replication across G4 regions in genomic DNA. Together, we unveiled the interaction between Pol η and DHX9 and demonstrated that the interaction promotes the replicative bypass of G4 structures in chromatin.


Assuntos
Replicação do DNA , Guanina , Cromatina , Cromatografia Líquida , Dano ao DNA , DNA Helicases/metabolismo , Guanina/metabolismo , Espectrometria de Massas em Tandem
13.
Anal Chem ; 94(43): 14925-14930, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264766

RESUMO

Radiation therapy benefits more than 50% of all cancer patients and cures 40% of them, where ionizing radiation (IR) deposits energy to cells and tissues, thereby eliciting DNA damage and resulting in cell death. Small GTPases are a superfamily of proteins that play critical roles in cell signaling. Several small GTPases, including RAC1, RHOB, and RALA, were previously shown to modulate radioresistance in cancer cells. However, there is no systematic proteomic study on small GTPases that regulate radioresistance in cancer cells. Herein, we applied a high-throughput scheduled multiple-reaction monitoring (MRM) method, along with the use of synthetic stable isotope-labeled (SIL) peptides, to identify differentially expressed small GTPase proteins in two pairs of breast cancer cell lines, MDA-MB-231 and MCF7, and their corresponding radioresistant cell lines. We identified 7 commonly altered small GTPase proteins with over 1.5-fold changes in the two pairs of cell lines. We also discovered ARFRP1 as a novel regulator of radioresistance, where its downregulation promotes radioresistance in breast cancer cells. Together, this represents the first comprehensive investigation about the differential expression of the small GTPase proteome associated with the development of radioresistance in breast cancer cells. Our work also uncovered ARFRP1 as a new target for enhancing radiation sensitivity in breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Monoméricas de Ligação ao GTP , Humanos , Feminino , Proteômica/métodos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias da Mama/metabolismo , Células MCF-7 , Tolerância a Radiação/genética , Linhagem Celular Tumoral
14.
BMC Cancer ; 22(1): 691, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739510

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a third most common tumor of the urinary system. Nowadays, Immunotherapy is a hot topic in the treatment of solid tumors, especially for those tumors with pre-activated immune state. METHODS: In this study, we downloaded genomic and clinical data of RCC samples from The Cancer Genome Atlas (TCGA) database. Four immune-related genetic signatures were used to predict the prognosis of RCC by Cox regression analysis. Then we established a prognostic risk model consisting of the genes most related to prognosis from four signatures to value prognosis of the RCC samples via Kaplan-Meier (KM) survival analysis. An independent data from International Cancer Genome Consortium (ICGC) database were used to test the predictive stability of the model. Furthermore, we performed landscape analysis to assess the difference of gene mutant in the RCC samples from TCGA. Finally, we explored the correlation between the selected genes and the level of tumor immune infiltration via Tumor Immune Estimation Resource (TIMER) platform. RESULTS: We used four genetic signatures to construct prognostic risk models respectively and found that each of the models could divide the RCC samples into high- and low-risk groups with significantly different prognosis, especially in advanced RCC. A comprehensive prognostic risk model was constructed by 8 candidate genes from four signatures (HLA-B, HLA-A, HLA-DRA, IDO1, TAGAP, CIITA, PRF1 and CD8B) dividing the advanced RCC samples from TCGA database into high-risk and low-risk groups with a significant difference in cancer-specific survival (CSS). The stability of the model was verified by independent data from ICGC database. And the classification efficiency of the model was stable for the samples from different subgroups. Landscape analysis showed that mutation ratios of some genes were different between two risk groups. In addition, the expression levels of the selected genes were significantly correlated with the infiltration degree of immune cells in the advanced RCC. CONCLUSIONS: Sum up, eight immune-related genes were screened in our study to construct prognostic risk model with great predictive value for the prognosis of advanced RCC, and the genes were associated with infiltrating immune cells in tumors which have potential to conduct personalized treatment for advanced RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/patologia , Prognóstico , Fatores de Risco
15.
Cell Commun Signal ; 20(1): 175, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348350

RESUMO

BACKGROUND: Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism. METHODS: Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, ß-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells. RESULTS: Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent ß-catenin stabilization and nuclear translocation. Nuclear ß-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells. CONCLUSIONS: This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Antígeno B7-H1/metabolismo , beta Catenina , Neoplasias Hepáticas/patologia , Espermina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Microb Cell Fact ; 21(1): 104, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643507

RESUMO

Listeria monocytogenes is a food-borne pathogen. Pediocin is a group IIα bacteriocin with anti-listeria activity that is naturally produced by Pediococcus acidilactic and Lactobacillus plantarum. The pedA/papA gene encodes pediocin/plantaricin. In native hosts, the expression and secretion of active PedA/PapA protein rely on the accessory protein PedC/PapC and ABC transporter PedD/PapD on the same operon. The excretion machines were also necessary for pediocin protein expression in heterologous hosts of E. coli, Lactobacillus lactis, and Corynebacterium glutamicum. In this study, two vectors carrying the codon sequence of the mature PapA peptide were constructed, one with and one without a His tag. Both fragments were inserted into the plasmid pHT43 and transformed into Bacillus subtilis WB800N. The strains were induced with IPTG to secrete the fused proteins PA1 and PA2. Supernatants from both recombinant strains can inhibit Listeria monocytogenes ATCC54003 directly. The fused protein possesses inhibition activity as a whole dispense with removal of the leading peptide. This is the first report of active pediocin/PapA expression without the assistance of PedCD/PapCD in heterogeneous hosts. In addition, the PA1 protein can be purified by nickel-nitrilotriacetic acid (Ni-NTA) metal affinity chromatography.


Assuntos
Bacillus subtilis , Bacteriocinas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Escherichia coli/metabolismo , Pediocinas/metabolismo , Pediococcus/genética , Pediococcus/metabolismo
17.
Inorg Chem ; 61(49): 20026-20034, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441952

RESUMO

To reasonably design and synthesize metal-organic frameworks (MOFs) with high stability and excellent adsorption/separation performance, the pore configuration and functional sites are very important. Here, we report two structurally similar cluster-based MOFs using a pyridine-modified low-symmetry ligand [H4L = 2,6-bis(2',5'-dicarboxyphenyl)pyridine], [(NH2Me2)2][Co5(L)2(OCH3)2(µ3-OH)2·2DMF]·2DMF·2H2O (1) and [Co5(L)2(µ3-OH)2(H2O)2]·2H2O·4DMF (2). The structures of 1 and 2 are built from Co5 clusters, which have one-dimensional open channels, but their microporous environments are different due to the different ways in which ligands bind to the metals. Both MOFs have extremely high chemical stabilities over a wide pH range (2-12). The two MOFs have similar adsorption capacities of C2H2 (144.0 cm3 g-1 for 1 and 141.3 cm3 g-1 for 2), but 1 has a higher C2H2/CO2 selectivity of 3.5 under ambient conditions. The difference in gas adsorption and separation between the two MOFs has been compared by a breakthrough experiment and theoretical calculation, and the influence of the microporous environment on the gas adsorption and separation performance of MOFs has been further studied.


Assuntos
Estruturas Metalorgânicas , Dióxido de Carbono , Metais , Adsorção
18.
Nucleic Acids Res ; 48(21): 11994-12003, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231681

RESUMO

Vascular endothelial zinc finger 1 (VEZF1) plays important roles in endothelial lineage definition and angiogenesis. Vasohibins 1 and 2 (VASH1 and VASH2) can form heterodimers with small vasohibin-binding protein (SVBP) and were recently shown to regulate angiogenesis by acting as tubulin detyrosinases. Here, we showed that VEZF1 binds directly with DNA guanine quadruplex (G quadruplex, G4) structures in vitro and in cells, which modulates the levels of the two isoforms of VASH1 mRNA. Disruption of this interaction, through genetic depletion of VEZF1 or treatment of cells with G4-stabilizing small molecules, led to increased production of the long over short isoform of VASH1 (i.e. VASH1A and VASH1B, respectively) mRNA and elevated tubulin detyrosinase activity in cells. Moreover, disruption of VEZF1-G4 interactions in human umbilical vein endothelial cells resulted in diminished angiogenesis. These results suggest that the interaction between VEZF1 and G4 structures assumes a crucial role in angiogenesis, which occurs through regulating the relative levels of the two isoforms of VASH1 mRNA and the detyrosinase activity of the VASH1-SVBP complex. Together, our work revealed VEZF1 as a G4-binding protein, identified a novel regulatory mechanism for tubulin detyrosinase, and illustrated that the VEZF1- and VASH1-mediated angiogenesis pathways are functionally connected.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Quadruplex G , Guanina/metabolismo , Neovascularização Fisiológica/genética , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Guanina/química , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Poliadenilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
19.
World J Surg Oncol ; 20(1): 87, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296343

RESUMO

BACKGROUND: Though the survival benefit of primary tumor operation for patients with signet ring cell carcinoma of the stomach is known, the specific characteristics of those patients who would profit from the operation are yet to be determined. To this end, a predictive model was developed to identify the conjecture that the survival profit from primary tumor operation would only be obtained by patients. METHOD: The clinical data of the patients with signet ring cell carcinoma of the stomach were obtained from the Surveillance, Epidemiology, and End Results database, and then divided into operation and no-operation groups based on whether the patients underwent the primary tumor operation. To remove the confounding factors, propensity score matching was employed, and it was hypothesized that the patients who had been operated on and lived a longer life than the median cancer-specific survival time of those who hadn't must have profited from the surgery. To discuss the independent factors of cancer-specific survival time in the beneficial group and the non-beneficial group, the Cox model was used, and based on the various vital predictive factors, a nomogram was drawn using logistic regression. RESULT: The number of eligible patients was 12,484, with 43.9% (5483) of them having received surgery. After employing propensity score matching, the cancer-specific survival time of the operation group was found to be apparently longer (median: 21 vs. 5 months; p < 0.001) than the no-operation group. In the operation group, 4757 (86.7%) of the patients lived longer than five months (beneficial group). The six indexes (beneficial and non-beneficial group) included gender, age, Tumor Node Metastasis stage, histologic type, differentiation grade, and tumor position, and were used as predictors to draw the nomogram. The nomogram was used to divide the patients who had taken operations into two groups: the beneficial operation group and the non-beneficial operation group. The beneficial operation group, it was found, survived longer than the non-beneficial operation group (median cancer-specific survival time: 28 vs. 3 months, p < 0.001). Moreover, there was we could tell little difference in survival between the two groups (median cancer-specific survival time: 3 vs. 5 months). CONCLUSIONS: The predictive model created to select suitable candidates for surgical treatment from patients with signet ring carcinoma of the stomach could be adopted to identify certain patients benefiting from the primary tumor operation.


Assuntos
Carcinoma de Células em Anel de Sinete , Carcinoma de Células em Anel de Sinete/secundário , Humanos , Nomogramas , Pontuação de Propensão , Estômago/patologia
20.
BMC Musculoskelet Disord ; 23(1): 794, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986271

RESUMO

BACKGROUND: Oblique lumbar interbody fusion (OLIF) is an important surgical modality for the treatment of degenerative lumbar spine disease. Various supplemental fixations can be co-applied with OLIF, increasing OLIF stability and reducing complications. However, it is unclear whether osteoporosis affects the success of supplemental fixations; therefore, this study analyzed the effects of osteoporosis on various supplemental fixations co-applied with OLIF. METHODS: We developed and validated an L3-S1 finite element (FE) model; we assigned different material properties to each component and established models of the osteoporotic and normal bone lumbar spine. We explored the outcomes of OLIF combined with each of five supplemental fixations: standalone OLIF; OLIF with lateral plate fixation (OLIF + LPF); OLIF with translaminar facet joint fixation and unilateral pedicle screw fixation (OLIF + TFJF + UPSF); OLIF with unilateral pedicle screw fixation (OLIF + UPSF); and OLIF with bilateral pedicle screw fixation (OLIF + BPSF). Under the various working conditions, we calculated the ranges of motion (ROMs) of the normal bone and osteoporosis models, the maximum Mises stresses of the fixation instruments (MMSFIs), and the average Mises stresses on cancellous bone (AMSCBs). RESULTS: Compared with the normal bone OLIF model, no demonstrable change in any segmental ROM was apparent. The MMSFIs increased in all five osteoporotic OLIF models. In the OLIF + TFJF + UPSF model, the MMSFIs increased sharply in forward flexion and extension. The stress changes of the OLIF + UPSF, OLIF + BPSF, and OLIF + TFJF + UPSF models were similar; all stresses trended upward. The AMSCBs decreased in all five osteoporotic OLIF models during flexion, extension, lateral bending, and axial rotation. The average stress change of cancellous bone was most obvious under extension. The AMSCBs of the five OLIF models decreased by 14%, 23.44%, 21.97%, 40.56%, and 22.44% respectively. CONCLUSIONS: For some supplemental fixations, the AMSCBs were all reduced and the MMSFIs were all increased in the osteoporotic model, compared with the OLIF model of normal bone. Therefore, the biomechanical performance of an osteoporotic model may be inferior to the biomechanical performance of a normal model for the same fixation method; in some instances, it may increase the risks of fracture and internal fixation failure.


Assuntos
Osteoporose , Parafusos Pediculares , Fusão Vertebral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/cirurgia , Osteoporose/complicações , Osteoporose/cirurgia , Amplitude de Movimento Articular , Fusão Vertebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA