Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633260

RESUMO

Huntington's disease (HD) results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mutant huntingtin (mHTT) to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by JNK kinases and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNK kinases. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem HD patients. Collectively, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in HD.

2.
J Neuropathol Exp Neurol ; 83(10): 870-881, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917443

RESUMO

Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a histological probe aimed at detecting and localizing bioactive tau in situ. We first induced the recruitment of a tagged probe by bioactive Tau in human brain tissue slices using biosensor cell lysates containing a fluorescent probe. We then enhanced sensitivity and flexibility by designing a recombinant probe with a myc tag. The probe design aimed to replicate the recruitment process seen in prion-like mechanisms based on the cryo-EM structure of tau aggregates in Alzheimer disease (AD). Using this novel probe, we observed selective staining of misfolded tau in pre- and post-synaptic structures within neurofibrillary tangles and neurites, whether or not associated with neuritic plaques. The probe specifically targeted AD-associated bioactive tau and did not recognize bioactive tau from other neurodegenerative diseases. Electron microscopy and immunolabeling further confirmed the identification of fibrillar and non-fibrillar tau. Finally, we established a correlation between quantifying bioactive tau using this technique and gold standard biosensor cells. This technique presents a robust approach for detecting bioactive tau in AD tissues and has potential applications for deciphering mechanisms of tau propagation and degradation pathways.


Assuntos
Doença de Alzheimer , Encéfalo , Proteínas tau , Proteínas tau/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Técnicas Biossensoriais/métodos
3.
JAMA Neurol ; 80(11): 1209-1221, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812432

RESUMO

Importance: Factors associated with synapse loss beyond amyloid-ß plaques and neurofibrillary tangles may more closely correlate with the emergence of cognitive deficits in Alzheimer disease (AD) and be relevant for early therapeutic intervention. Objective: To investigate whether accumulation of tau oligomers in synapses is associated with excessive synapse elimination by microglia or astrocytes and with cognitive outcomes (dementia vs no dementia [hereinafter termed resilient]) of individuals with equal burdens of AD neuropathologic changes at autopsy. Design, Setting, and Participants: This cross-sectional postmortem study included 40 human brains from the Massachusetts Alzheimer Disease Research Center Brain Bank with Braak III to IV stages of tau pathology but divergent antemortem cognition (dementia vs resilient) and cognitively normal controls with negligible AD neuropathologic changes. The visual cortex, a region without tau tangle deposition at Braak III to IV stages, was assessed after expansion microscopy to analyze spatial relationships of synapses with microglia and astrocytes. Participants were matched for age, sex, and apolipoprotein E status. Evidence of Lewy bodies, TDP-43 aggregates, or other lesions different from AD neuropathology were exclusion criteria. Tissue was collected from July 1998 to November 2020, and analyses were conducted from February 1, 2022, through May 31, 2023. Main Outcomes and Measures: Amyloid-ß plaques, tau neuropil thread burden, synapse density, tau oligomers in synapses, and internalization of tau oligomer-tagged synapses by microglia and astrocytes were quantitated. Analyses were performed using 1-way analysis of variance for parametric variables and the Kruskal-Wallis test for nonparametric variables; between-group differences were evaluated with Holm-Sídák tests. Results: Of 40 included participants (mean [SD] age at death, 88 [8] years; 21 [52%] male), 19 had early-stage dementia with Braak stages III to IV, 13 had resilient brains with similar Braak stages III to IV, and 8 had no dementia (Braak stages 0-II). Brains with dementia but not resilient brains had substantial loss of presynaptic (43%), postsynaptic (33%), and colocalized mature synaptic elements (38%) compared with controls and significantly higher percentages of mature synapses internalized by IBA1-positive microglia (mean [SD], 13.3% [3.9%] in dementia vs 2.6% [1.9%] in resilient vs 0.9% [0.5%] in control; P < .001) and by GFAP-positive astrocytes (mean [SD], 17.2% [10.9%] in dementia vs 3.7% [4.0%] in resilient vs 2.7% [1.8%] in control; P = .001). In brains with dementia but not in resilient brains, tau oligomers more often colocalized with synapses, and the proportions of tau oligomer-containing synapses inside microglia (mean [SD] for presynapses, mean [SD], 7.4% [1.8%] in dementia vs 5.1% [1.9%] resilient vs 3.7% [0.8%] control; P = .006; and for postsynapses 11.6% [3.6%] dementia vs 6.8% [1.3%] resilient vs 7.4% [2.5%] control; P = .001) and astrocytes (mean [SD] for presynapses, 7.0% [2.1%] dementia vs 4.3% [2.2%] resilient vs 4.0% [0.7%] control; P = .001; and for postsynapses, 7.9% [2.2%] dementia vs 5.3% [1.8%] resilient vs 3.0% [1.5%] control; P < .001) were significantly increased compared with controls. Those changes in brains with dementia occurred in the absence of tau tangle deposition in visual cortex. Conclusion and Relevance: The findings from this cross-sectional study suggest that microglia and astrocytes may excessively engulf synapses in brains of individuals with dementia and that the abnormal presence of tau oligomers in synapses may serve as signals for increased glial-mediated synapse elimination and early loss of brain function in AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Criança , Feminino , Doença de Alzheimer/patologia , Estudos Transversais , Astrócitos/patologia , Microglia/patologia , Neuroglia/patologia , Peptídeos beta-Amiloides , Sinapses/patologia
4.
Acta Neuropathol Commun ; 10(1): 72, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534858

RESUMO

Clinico-pathological correlation studies show that some otherwise healthy elderly individuals who never developed cognitive impairment harbor a burden of Alzheimer's disease lesions (plaques and tangles) that would be expected to result in dementia. In the absence of comorbidities explaining such discrepancies, there is a need to identify other brain changes that meaningfully contribute to the cognitive status of an individual in the face of such burdens of plaques and tangles. Glial inflammatory responses, a universal phenomenon in symptomatic AD, show robust association with degree of cognitive impairment, but their significance in early tau pathology stages and contribution to the trajectory of cognitive decline at an individual level remain widely unexplored. We studied 55 brains from individuals at intermediate stages of tau tangle pathology (Braak III-IV) with diverging antemortem cognition (demented vs. non-demented, here termed `resilient'), and age-matched cognitively normal controls (Braak 0-II). We conducted quantitative assessments of amyloid and tau lesions, cellular vulnerability markers, and glial phenotypes in temporal pole (Braak III-IV region) and visual cortex (Braak V-VI region) using artificial-intelligence based semiautomated quantifications. We found distinct glial responses with increased proinflammatory and decreased homeostatic markers, both in regions with tau tangles (temporal pole) and without overt tau deposits (visual cortex) in demented but not in resilient. These changes were significantly associated with markers of cortical cell damage. Similar phenotypic glial changes were detected in the white matter of demented but not resilient and were associated with higher burden of overlying cortical cellular damage in regions with and without tangles. Our data suggest that changes in glial phenotypes in cortical and subcortical regions represent an early phenomenon that precedes overt tau deposition and likely contributes to cell damage and loss of brain function predicting the cognitive status of individuals at intermediate stages of tau aggregate burden (Braak III-IV).


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Idoso , Doença de Alzheimer/patologia , Biomarcadores , Encéfalo/patologia , Cognição , Humanos , Emaranhados Neurofibrilares/patologia , Neuroglia/patologia , Fenótipo , Placa Amiloide/patologia , Proteínas tau/metabolismo
5.
Front Neurol ; 12: 589330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093382

RESUMO

Background: Bilinguals with post-stroke aphasia (BWA) require treatment options that are sensitive to their particular bilingual background and deficits across languages. However, they may experience limited access to bilingual clinical resources due to reduced availability of bilingual practitioners, geographical constraints, and other difficulties. Telerehabilitation can improve access to bilingual clinical services for BWA and facilitate the delivery of specific language treatments at distance, but more evidence on its effectiveness and reliability is needed. This study aimed to determine the equivalence of effectiveness and reliability of a semantic treatment for word retrieval deficits in BWA delivered via telerehabilitation relative to in-person therapy. Methods: We examined the retrospective data of 16 BWA who received 20 sessions of therapy based on semantic feature analysis for word retrieval deficits in person (n = 8) or via telerehabilitation (n = 8). The two groups were comparable on age, years of education, time of post-stroke onset, aphasia severity, and naming ability in both languages. Treatment effectiveness (i.e., effect sizes in the treated and the untreated language, and change on secondary outcome measures) and reliability (i.e., clinician adherence to treatment protocol) were computed for each delivery modality and compared across groups. Results: Significant improvements were observed in most patients, with no significant differences in treatment effect sizes or secondary outcomes in the treated and the untreated language between the teletherapy group and the in-person therapy group. Also, the average percentage of correctly delivered treatment steps by clinicians was high for both therapy delivery methods with no significant differences between the telerehabilitation vs. the in-person modality. Discussion: This study provides evidence of the equivalence of treatment gains between teletherapy and in-person therapy in BWA and the high reliability with which treatment for word retrieval deficits can be delivered via telerehabilitation, suggesting that the essential treatment components of the intervention can be conducted in a comparable manner in both delivery modalities. We further discuss the benefits and potential challenges of the implementation of telerehabilitation for BWA. In the future, telerehabilitation may increase access to therapy for BWA with varying linguistic and cultural backgrounds, thus, offering a more inclusive treatment approach to this population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA