RESUMO
Membrane technology plays a central role in advancing separation processes, particularly in water treatment. Covalent organic frameworks (COFs) have transformative potential in this field due to their adjustable structures and robustness. However, conventional COF membrane synthesis methods are often associated with challenges, such as time-consuming processes and limited control over surface properties. Our study demonstrates a rapid, microwave-assisted method to synthesize self-standing COF membranes within minutes. This approach allows control over the wettability of the surface and achieves superhydrophilic and near-hydrophobic properties. A thorough characterization of the membrane allows a detailed analysis of the membrane properties and the difference in wettability between its two faces. Microwave activation accelerates the self-assembly of the COF nanosheets, whereby the thickness of the membrane can be controlled by adjusting the time of the reaction. The superhydrophilic vapor side of the membrane results from -NH2 reactions with acetic acid, while the nearly hydrophobic dioxane side has terminal aldehyde groups. Leveraging the superhydrophilic face, water filtration at high water flux, complete oil removal, increased rejection with anionic dye size, and resistance to organic fouling were achieved. The TTA-DFP-COF membrane opens new avenues for research to address the urgent need for water purification, distinguished by its synthesis speed, simplicity, and superior separation capabilities.
RESUMO
A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.
RESUMO
Few-layers thick metal-organic nanosheets have been synthesized using water-assisted solid-state transformation through a combined top-down and bottom-up approach. The metal-organic polyhedra (MOPs) convert into metal-organic frameworks (MOFs) which subsequently self-exfoliate into few-layered metal-organic nanosheets. These MOP crystals experience a hydrophobicity gradient with the inner surface during contact with water because of the existence of hydrophobic spikes on their outer surface. When the amount of water available for interaction is higher, the resultant layers are not stacked to form bulk materials; instead few-layered nanosheets with high uniformity were obtained in high yield. The phenomenon has resulted high yield production of uniformly distributed layered metal-organic nanosheets from three different MOPs, showing its general adaptability.
RESUMO
A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.
RESUMO
Amine-linked (C-NH) porous organic cages (POCs) are preferred over the imine-linked (C=N) POCs owing to their enhanced chemical stability. In general, amine-linked cages, obtained by the reduction of corresponding imines, are not shape-persistent in the crystalline form. Moreover, they require multistep synthesis. Herein, a one-pot synthesis of four new amine-linked organic cages by the reaction of 1,3,5-triformylphloroglucinol (Tp) with different analogues of alkanediamine is reported. The POCs resulting from the odd diamine (having an odd number of -CH2 groups) is conformationally eclipsed, while the POCs constructed from even diamines adopt a gauche conformation. This odd-even alternation in the conformation of POCs has been supported by computational calculations. The synthetic strategy hinges on the concept of Schiff base condensation reaction followed by keto-enol tautomerization. This mechanism is the key for the exceptional chemical stability of cages and facilitates their resistance towards acids and bases.
RESUMO
The partially fluorinated metal-organic frameworks (F-MOFs) have been constructed from 3-fluoro-4-pyridinecarboxylic acid and trans-3-fluoro-4-pyridineacrylic acid linkers using Mn(2+), Co(2+), and Cd(2+) metals via the solvothermal method, which show isostructural isomerism with their nonfluorinated counterparts synthesized using 4-pyridinecarboxylic acid and trans-4-pyridineacrylic acid, respectively. The simultaneous effect of partial fluorination and isoreticulation on structure and H2 adsorption has been studied systematically in isostructural nonfluorinated and partially fluorinated MOFs, which shows that the increment in the hydrogen uptake properties in F-MOFs is not a universal phenomenon but is rather system-specific and changes from one system to another.
RESUMO
Twist and release: The metal-organic polyhedron 1 synthesized from 5-(prop-2-ynyloxy)isophthalic acid and Cu(NO3 )2 â 3 H2 O has a hydrophobic outer surface and a hydrophilic inner core. In an aqueous medium, the resulting polarity gradient led to the transformation of 1 into the 2D metal-organic framework 2. This unique phenomenon enabled the gradual release of entrapped drug molecules.
RESUMO
Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.
Assuntos
Síndrome de Cockayne , Estruturas Metalorgânicas , Humanos , Nitrocompostos , PorosidadeRESUMO
Ionic covalent organic frameworks (iCOFs) are new examples of porous materials and have shown great potential for various applications. When functionalized with suitable emission sites, guest uptake via the ionic moieties of iCOFs can cause a significant change in luminescence, making them excellent candidates for chemosensors. In here, we present a luminescence sensor in the form of an ionic covalent organic framework (TGH+â¢PD) composed of guanidinium and phenanthroline moieties for the detection of ammonia and primary aliphatic amines. TGH+â¢PD exhibits strong emission enhancement in the presence of selective primary amines due to the suppression of intramolecular charge transfer (ICT) with an ultra-low detection limit of 1.2 × 10â7 M for ammonia. The presence of ionic moieties makes TGH+â¢PD highly dispersible in water, while deprotonation of the guanidinium moiety by amines restricts its ICT process and signals their presence by enhanced fluorescence emission. The presence of ordered pore walls introduces size selectivity among analyte molecules, and the iCOF has been successfully used to monitor meat products that release biogenic amine vapors upon decomposition due to improper storage.
Assuntos
Estruturas Metalorgânicas , Amônia , Aminas Biogênicas , Cátions , Fluorescência , GuanidinaRESUMO
An aliovalent mixed-metal framework DUT-174 [LiAl(2-methylimidazolate)4]n, isostructural to ZIF-8, was synthesized from lithium aluminum hydride (LiAlH4) and 2-methylimidazole (2-mImH) through dehydrogenation. Lithium and aluminum cations acting as alternating framework nodes are coordinated tetrahedrally by (2-mIm)-. DUT-174 has a high specific surface area of 1149 m2 g-1 and CO2 uptake of 11.57 mmol g-1 at 195 K.
RESUMO
As a prominent and representative example of flexible metal-organic frameworks (MOFs), DUT-49(Cu) has gained attention due to the unique phenomenon of negative gas adsorption (NGA), originating from an unprecedented structural contraction during the gas adsorption. Herein, postsynthetic metal exchange is demonstrated to afford DUT-49 frameworks with a wide variety of metal cations, e.g., Mn2+, Fe2+, Ni2+, Zn2+, Cu2+, and Cd2+. The single-crystal-to-single-crystal conversion allowed characterization of the new MOFs by single crystal X-ray diffraction, indicating identical structure and topology compared with that of previously explored DUT-49(Cu) framework. This approach is proven successful in achieving Mn-Mn and Cd-Cd dimers, which are rare examples of M-M paddle-wheel SBUs. The relative stability and flexibility of the resulted frameworks are observed to be highly sensitive to the metal ion of the framework, following the trends predicted by the Irving-Williams series. DUT-49(Ni) was recognized as a second material from the DUT-49 series showing adsorption-induced transitions. A sequential increase in framework flexibility from rigid to flexible and from flexible to NGA has been achieved through selective incorporation of metal centers into the structure. Finally, heterometallic structures are formed by selective and controlled exchange of metal ions to finely tune the flexibility and NGA phenomenon of the framework.
RESUMO
Inkless and erasable printing is the key solution towards a more sustainable paper industry, in terms of reducing paper wastages and the associated environmental hazards from waste paper processing. However, only a few cases have been reported in the literature where inkless printing has been tested in some practical systems. In an attempt to address this solution, we used photochromic metal-organic frameworks (MOFs) and tested their capability as inkless and erasable printing media. The printing was performed using sunlight as the light source on MOF-coated papers. The resulting printing had good resolution and stability, and was capable of being read both by the human eye and smart electronic devices; furthermore, the paper could be reused for several cycles without any significant loss in intensity. Interestingly, different coloured printing with a similar efficiency was achieved by varying the structure of the MOF.
RESUMO
Biuret-modified tetraamidomacrocyclic cobalt complex [CoIII-bTAML]- is shown to catalyze electrochemical water oxidation at basic pH leading to the formation of O2. Electrochemical and spectroscopic studies indicate a high valent cobalt oxo intermediate isoelectronic to CoV(O) as the active oxidant. The kinetic isotope effect of 8.63 indicates an atom proton transfer mechanism.
RESUMO
Two new uracil (U) and 5-flurouracil (5-FU) labeled ruthenium(ii)-polypyridyl based cellular imaging reagents are reported. Confocal laser scanning microscopic images with live and paraformaldehyde (PFA) fixed MCF-7 cells are examined using these two low-cytotoxic reagents. Experimental results show that these two complexes, appropriately functionalized with U (1) and 5-FU (2), have specific affinity for the lipid dense regions like the endoplasmic reticulum, cell membrane, and cytoplasmic vacuoles in live MCF-7 cells, and dye internalization in these regions happened following an endocytosis pathway. Interestingly, these two complexes are found to be localized in the nucleus of the PFA fixed cells. For fixed cells, presumably the lipid layer disruption helped in the explicit localization of the complexes 1 and 2 in the cell nucleus through specific interaction with cellular DNA. Poor and non-specific internalization of an analogous model complex 3, without having a U or 5-FU moiety, reveals the definite influence of U or 5-FU as well as the role of lipophilicity of the respective complex 1 and 2 in the cellular internalization process. Apart from these, a large Stokes shift (â¼160 nm) and an appreciably long lived 3MLCT excited state (â¼320 ns) in aq. buffer medium (pH 7.4) are other key features for complexes 1 and 2. Unlike the common nuclear DNA staining reagents like DAPI, these low-cytotoxic reagents are found to be highly stable towards photo-bleaching upon irradiation with 455 nm at the MLCT band for these complexes.
RESUMO
A new Mg(ii) based photochromic porous metal-organic framework (MOF) has been synthesized bearing naphthalenediimide (NDI) chromophoric unit. This MOF (Mg-NDI) shows instant and reversible solvatochromic behavior in presence of solvents with different polarity. Mg-NDI also exhibits fast and reversible photochromism via radical formation. Due to the presence of electron deficient NDI moiety, this MOF exhibits selective organic amine (electron rich) sensing in solid state. The organic amine detection has been confirmed by photoluminescence quenching experiment and visual color change.