Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Reprod Fertil Dev ; 32(4): 409-418, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31775998

RESUMO

High polyspermy is one of the major limitations of porcine invitro fertilisation (IVF). The addition of oviductal fluid (OF) during IVF reduces polyspermy without decreasing the fertilisation rate. Because extracellular vesicles (EVs) have been described as important OF components, the aim of this study was to evaluate the effect of porcine oviductal EVs (poEVs) on IVF efficiency compared with porcine OF (fresh and lyophilised). OF was collected from abattoir oviducts by phosphate-buffered saline flush, and poEVs were isolated by serial ultracentrifugation. Four IVF treatments were conducted: poEVs (0.2mgmL-1), OF (10%), lyophilized and reconstituted pure OF (LOF; 1%) and IVF without supplementation (control). Penetration, monospermy and IVF efficiency were evaluated. Transmission electron microscopy showed an EVs population primarily composed of exosomes (83%; 30-150nm). Supplementation with poEVs during IVF increased monospermy compared with control (44% vs 17%) while maintaining an acceptable penetration rate (61% vs 78% respectively) in a similar way to OF and LOF. Western blotting revealed poEVs proteins involved in early reproductive events, including zona pellucida hardening. In conclusion, our finding show that poEVs are key components of porcine OF and may play roles in porcine fertilisation and polyspermy regulation, suggesting that supplementation with poEVs is a reliable strategy to decrease porcine polyspermy and improve invitro embryo production outcomes.


Assuntos
Vesículas Extracelulares/fisiologia , Fertilização in vitro/veterinária , Fertilização , Oviductos/fisiologia , Interações Espermatozoide-Óvulo , Espermatozoides/fisiologia , Sus scrofa/fisiologia , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Masculino , Oviductos/metabolismo , Oviductos/ultraestrutura , Espermatozoides/metabolismo , Sus scrofa/metabolismo
2.
Biochemistry (Mosc) ; 84(7): 729-745, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31509725

RESUMO

Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.


Assuntos
Imunoterapia , Macrófagos/metabolismo , Nanopartículas/metabolismo , Neoplasias/terapia , Animais , Polaridade Celular/fisiologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Microscopia Intravital , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/química , Macrófagos/classificação , Camundongos , Nanopartículas/química , Fenótipo , Coroa de Proteína/imunologia , Microambiente Tumoral/imunologia
3.
Bull Exp Biol Med ; 167(1): 123-130, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31183645

RESUMO

Intravital microscopy is widely used for in vivo studies of the mechanisms of carcinogenesis and response to antitumor therapy. For visualization of tumor cells in vivo, cell lines expressing fluorescent proteins are needed. Expression of exogenous proteins can affect cell growth rate and their tumorigenic potential. Therefore, comprehensive analysis of the morphofunctional properties of transduced cells is required for creating appropriate models of tumor microenvironment. In the present study, six lines of mouse tumor cells expressing green and red fluorescent proteins were derived. Analysis of cells morphology, growth kinetics, and response to chemotherapy in vitro revealed no significant differences between wild-type and transduced cell lines. Introduction of fluorescent proteins into the genome of 4T1 (murine breast cancer) and B16-F10 (murine melanoma) cells did not affect tumor growth rate after subcutaneous implantation to mice, while both CT26-GFP and CT26-RFP cells (murine colon cancer) were rejected starting from day 8 after implantation. Elucidation of the mechanisms underlying CT26-GFP/RFP rejection is required to modify transduction technique for creating the models of tumor microenvironment accessible for in vivo visualization. Transduced 4T1 and B16-F10 cell lines can be used for intravital microscopic imaging of tumor cells, neoplastic vasculature, and leukocyte subpopulations.


Assuntos
Microscopia Intravital/métodos , Proteínas Luminescentes/análise , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Proteínas de Fluorescência Verde/análise , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/genética , Proteína Vermelha Fluorescente
4.
Bull Exp Biol Med ; 161(5): 706-710, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27704352

RESUMO

We synthesized a fluorescence conjugate and modified magnetite-gold nanoparticles carrying prostate specific membrane antigen (PSMA) as the ligand. Analysis of their binding to human prostate cancer cell lines PC-3 (PSMA-) and LNCaP (PSMA+) showed selective interaction of the synthesized conjugate and modified nanoparticles with LNCaP cells. These findings suggest that these nanoparticles can be used in tissue-specific magnetic-resonance imaging.


Assuntos
Meios de Contraste/síntese química , Neoplasias da Próstata/diagnóstico por imagem , Linhagem Celular Tumoral , Meios de Contraste/metabolismo , Citoplasma/metabolismo , Ouro/química , Humanos , Nanopartículas de Magnetita/química , Masculino , Nanoconjugados/química
5.
Biochemistry (Mosc) ; 80(11): 1469-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26615438

RESUMO

Entosis is a type of cell cannibalism during which one cell penetrates into another cell and usually dies inside it. Researchers mainly pay attention to initial and final stages of entosis. Besides, tumor cells in suspension are the primary object of studies. In the present study, we investigated morphological changes of both cells-participants of entosis during this process. The substrate-dependent culture of human normal keratinocytes HaCaT was chosen for the work. A combination of light microscopy and scanning electron microscopy was used to prove that one cell was completely surrounded by the plasma membrane of another cell. We investigated such "cell-in-cell" structures and described the structural and functional changes of both cells during entosis. The outer cell nucleus localization and shape were changed. Gradual degradation of the inner cell nucleus and of the junctions between the inner and the outer cells was revealed. Moreover, repeated redistribution of the outer cell membrane organelles (Golgi apparatus, lysosomes, mitochondria, and autophagosomes), rearrangement of its cytoskeleton, and change in the lysosomal, autophagosomal, and mitochondrial state in both entotic cells were observed during entosis. On the basis of these data, we divided entosis into five stages that make it possible to systematize description of this type of cell death.


Assuntos
Entose/fisiologia , Queratinócitos/citologia , Autofagia , Linhagem Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Humanos , Queratinócitos/metabolismo , Lisossomos/metabolismo , Microscopia Eletrônica de Varredura , Microtúbulos/metabolismo , Mitocôndrias/metabolismo
6.
Colloids Surf B Biointerfaces ; 206: 111931, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34171621

RESUMO

This work is devoted to studying the effects of non-magnetic shell coating on nanoparticles in a low frequency alternating magnetic field (LF AMF) on tumor cells in vitro. Two types of iron oxide nanoparticles with the same magnetic core with and without silica shells were synthesized. Nanoparticles with silica shells significantly decreased the viability of PC3 cancer cells in a low frequency alternating magnetic field according to the cytotoxicity test, unlike uncoated nanoparticles. We showed that cell death results from the intracellular membrane integrity failure, and the calcium ions concentration increase with the subsequent necrosis. Transmission electron microscopy images showed that the uncoated silica nanoparticles are primarily found in an aggregated form in cells. We believe that uncoated nanoparticles lose their colloidal stability in an acidic endosomal environment after internalization into the cell due to surface etching and the formation of aggregates. As a result, they encounter high endosomal macromolecular viscosity and become unable to rotate efficiently. We assume that effective rotation of nanoparticles causes cell death. In turn, silica shell coating increases nanoparticles stability, preventing aggregation in endosomes. Thus, we propose that the colloidal stability of magnetic nanoparticles inside cells is one of the key factors for effective magneto-mechanical actuation.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/toxicidade , Dióxido de Silício
7.
Sci Rep ; 8(1): 7462, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748550

RESUMO

Iron oxide nanoparticles have attracted a great deal of research interest and have been widely used in bioscience and clinical research including as contrast agents for magnetic resonance imaging, hyperthermia and magnetic field assisted radionuclide therapy. It is therefore important to develop methods, which can provide high-throughput screening of biological responses that can predict toxicity. The use of nanoelectrodes for single cell analysis can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. We have developed a new method for in vitro study of the toxicity of magnetic nanoparticles (NP) based on the measurement of intracellular reactive oxygen species (ROS) by a novel nanoelectrode. Previous studies have suggested that ROS generation is frequently observed with NP toxicity. We have developed a stable probe for measuring intracellular ROS using platinized carbon nanoelectrodes with a cavity on the tip integrated into a micromanipulator on an upright microscope. Our results show a significant difference for intracellular levels of ROS measured in HEK293 and LNCaP cancer cells before and after exposure to 10 nm size iron oxide NP. These results are markedly different from ROS measured after cell incubation with the same concentration of NP using standard methods where no differences have been detected. In summary we have developed a label-free method for assessing nanoparticle toxicity using the rapid (less than 30 minutes) measurement of ROS with a novel nanoelectrode.


Assuntos
Nanopartículas de Magnetita/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade/instrumentação , Apoptose , Linhagem Celular Tumoral , Células HEK293 , Humanos , Microeletrodos , Fatores de Tempo , Testes de Toxicidade/economia , Testes de Toxicidade/métodos
8.
Contrast Media Mol Imaging ; 2018: 8264208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344459

RESUMO

Magnetic resonance imaging (MRI) is a powerful technique for tumor diagnostics. Iron oxide nanoparticles (IONPs) are safe and biocompatible tools that can be used for further enhancing MR tumor contrasting. Although numerous IONPs have been proposed as MRI contrast agents, low delivery rates to tumor site limit its application. IONPs accumulation in malignancies depends on both IONPs characteristics and tumor properties. In the current paper, three differently shaped Pluronic F-127-modified IONPs (nanocubes, nanoclusters, and nanorods) were compared side by side in three murine tumor models (4T1 breast cancer, B16 melanoma, and CT26 colon cancer). Orthotopic B16 tumors demonstrated more efficient IONPs uptake than heterotopic implants. Magnetic nanocubes (MNCb) had the highest r2-relaxivity in vitro (300 mM-1·s-1) compared with magnetic nanoclusters (MNCl, 104 mM-1·s-1) and magnetic nanorods (MNRd, 51 mM-1·s-1). As measured by atomic emission spectroscopy, MNCb also demonstrated better delivery efficiency to tumors (3.79% ID) than MNCl (2.94% ID) and MNRd (1.21% ID). Nevertheless, MNCl overperformed its counterparts in tumor imaging, providing contrast enhancement in 96% of studied malignancies, whereas MNCb and MNRd were detected by MRI in 73% and 63% of tumors, respectively. Maximum MR contrasting efficiency for MNCb and MNCl was around 6-24 hours after systemic administration, whereas for MNRd maximum contrast enhancement was found within first 30 minutes upon treatment. Presumably, MNRd poor MRI performance was due to low r2-relaxivity and rapid clearance by lungs (17.3% ID) immediately after injection. MNCb and MNCl were mainly captured by the liver and spleen without significant accumulation in the lungs, kidneys, and heart. High biocompatibility and profound accumulation in tumor tissues make MNCb and MNCl the promising platforms for MRI-based tumor diagnostics and drug delivery.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanotubos/química , Neoplasias Experimentais/diagnóstico , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Camundongos , Neoplasias Experimentais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA